A Deep Learning Neural Network Techniques in Visualization, Imaging Data Acquisition And Diagnosis for Covid-19
Main Article Content
Abstract
The corona virus disease pandemic of 2019 (COVID-19) is sweeping the globe. Medical imaging, such as X-ray and computed tomography (CT), is critical in the global fight against COVID-19, and recently evolving artificial intelligence (AI) technologies are enhancing the capacity of imaging tools and assisting medical specialists. For example, image acquisition driven by Deep Learning Architecture may help optimise the scanning process and reshape the workflow with minimal patient intervention, ensuring the best security for imaging technicians. Furthermore, computer-aided platforms assist radiologists in making clinical decisions, such as disease identification, surveillance, and prognosis. In this workflow, we cover the full range of COVID-19-related medical imaging and analysis techniques, including image processing, segmentation, diagnosis, and follow-up. Traditional methods are used to interpret the evaluation, and various output metrics are collected.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.