Facial Emotion Recognition of Students using Deep Convolutional Neural Network
Main Article Content
Abstract
Understanding the emotions of the students in a classroom lecture will improve the Teaching – Learning process. It is difficult to find out the students’ interest in a conventional classroom lecture. Hence, we are providing a solution by analyzing the facial emotions of the students in a classroom with the help of a deep learning network. Deep learning is an advancement of machine learning technique which gives more accurate results than the machine learning algorithms. The proposed system will give an accurate prediction with the help of deep convolutional neural networks using VGG-16 architecture. This computer vision model will analyze every individual student’s emotion from the live video taken from the video camera fixed in the classroom and provide the overall emotion of the class based on the highest probability of students’ emotion. Later, our proposed VGG-16 architecture will be compared with models such as Alexnet and Resnet architecture to ensure its better accuracy.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.