Deep Learning Model For Predicting And Detecting Overlapping Symptoms Of Cardiovascular Diseases In Hospitals Of UAE
Main Article Content
Abstract
Deep learning (DL) is a subdomain of machine learning (ML) representing exponentially growing potential in the field of medicine, helping to classify information, new diseases, phenotyping, and intricate decision-making. The DL algorithm and technique of an ML domain is often meditated by a variety of neural networks (NN). DL module has been augmented by on-going developments in computer tools as well as techniques. The use of this learning technique has been increased in various domains such as e-commerce, banking and finance, as well as for speech and feature recognition to learn and classify intricate information. There is no medical literature on the strengths and weaknesses of DL. DL strengths comprises of its potential to automatically diagnose clinical appearances, enhance decision-making, recognizing the phenotypes, and effectively select treatment methodology to complex diseases. The DL algorithm that can be well matched to chemistry is the hemodynamic and electrophysiological parameters catalogues that are effectively captured over continuous periods by wearable machines, as well as the division of images into captured images or pictures (Nagueh, 2016). However, DL has number of weaknesses as well, including difficulty in interpreting its examples (the 'black-box' criticism), its requirement for multiple training data, no specificity in design, no data-usefulness in training, limited use in experimental models, and so on. Hence, the best clinical applications of DL require considerate problem solving solution, selection of the most suitable DL algorithms and information, and defining balance of outcome. This review updates the existing state of DL for cardiac physicians and researchers and gives diverse professions to escalate the pitfalls, close challenges, and opportunities for the currently available new area
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.