ON THE COUNTING FUNCTION OF SEMIPRIMES

Main Article Content

RAJU BARADI
SRINIVAS BOGA
SRINIVAS BOGA
NARESH THOTI
RAMAKRISHNA GATTADI

Abstract

A semiprime is a natural number which can be written as the product of two primes. The asymptotic behaviour of the function π2(x), the number of semiprimes less than or equal to x, is studied. Using a combinatorial argument, asymptotic series of π2(x) is determined, with all the terms explicitly given. An algorithm for the calculation of the constants involved in the asymptotic series is presented and the constants are computed to 20 significant digits. The errors of the partial sums of the asymptotic series are investigated. A generalization of this approach to products of k primes, for k ≥ 3, is also proposed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
BARADI, R., BOGA, S. ., BOGA, S. ., THOTI, N. ., & GATTADI, R. . (2018). ON THE COUNTING FUNCTION OF SEMIPRIMES. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(3), 1282–1290. https://doi.org/10.61841/turcomat.v9i3.14471
Section
Articles

References

C. Axler. New bounds for the prime

counting function. Integers, 16:A22, 2006.

C. Axler. On a family of functions

defined over sums of primes. Journal of

Integer Sequences, 22(5):Article 19.5.7,

J. Bohman and C. Fr¨oberg. The

Stieltjes function – definition and

properties. Mathematics of Computation,

(163):281–289, 1988.

K. Broughan. Extension of the Riemann

ζ-functions logarithmic derivative

positivity region to near the critical strip.

Canadian Mathematical Bulletin,

(2):186–194, 2009.

N. de Bruijn. Asymptotic Methods in

Analysis. North-Holland Publishing Co.,

Amsterdam, 1958.

H. Delange. Sur des formules de Atle

Selberg. Acta Arithmetica, 19:105–146,

P. Diaconis. Asymptotic expansion for

the mean and variance of the number of

prime factors of a number n. Technical

Report 96, Department of Statistics,

Stanford University, Stanford, California,

December 1976.

P. Dusart. Explicit estimates of some

functions over primes. Ramanujan Journal,

:227–251, 2018.

P. Erd˝os and M. Kac. The Gaussian

law of errors in the theory of additive

number theoretic functions. American

Journal of Mathematics, 62(1):738–742,

P. Erd˝os and A. S´ark˝ozy. On the

number of prime factors of integers. Acta

Scientiarum Mathematicarum, 42:237–

, 1980.

S. Finch. Mathematical Constants II.

Cambridge University Press, Cambridge,

12. C. Fr¨oberg. On the prime zeta

function. BIT, 8:187–202, 1968.

A. Harper. Two new proofs of the

Erd˝os-Kac theorem, with bound on the

rate of convergence, by Stein’s method for

distributional approximations.

Mathematical Proceedings of the

Cambridge Philosophical Society,

(1):95114, 2009.

S. Ishmukhametov and F. Sharifullina.

On distribution of semiprime numbers.

Izvestiya Vysshikh Uchebnykh Zavedenii.

Matematika, 8:53–59, 2014.

E. Landau. Handbuch der Lehre von

der Verteilung der Primzahlen. Druck und

Verlag von B.G.Teubner, Lepzig und

Berlin, 1909.

J. Nicolas. Sur la distribution des

nombres entiers ayant une quantit´e fix´ee

de facteurs premiers. Acta Arithmetica,

(3):191–200, 1984.