AN ARTIFICIAL INTELLIGENCE AND CLOUD BASED COLLABORATIVE PLATFORM FOR PLANT DISEASE IDENTIFICATION, TRACKING AND FORECASTING FOR FARMERS
Main Article Content
Abstract
Plant leaf diseases and destructive insects are a major challenge in the agriculture sector. Faster and an accurate prediction of leaf diseases in crops could help to develop an early treatment technique while considerably reducing economic losses. Modern advanced developments in Deep Learning have allowed researchers to extremely improve the performance and accuracy of object detection and recognition systems. In this paper, we proposed a deep-learning-based approach to detect leaf diseases in many different plants using images of plant leaves. Our goal is to find and develop the more suitable deep- learning methodologies for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which was used for the purpose of this work. The proposed system can effectively identified different types of diseases with the ability to deal with complex scenarios from a plants area.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.