Application of Ultra-Fast Laser-Patterning Computation for Advanced Manufacturing of Powdered Materials Using Deep Learning Approach

Main Article Content

Rohit Pandey

Abstract

The application of ultra-fast laser-patterning computation for advanced manufacturing of powdered materials has gained significant interest in recent years. This study proposes a novel approach that combines deep learning techniques with laser-patterning computation to enhance the manufacturing process of powdered materials. This is to develop a deep learning model that can accurately predict the laser-patterning parameters for different powdered materials. This model takes into account various factors such as material properties, laser parameters, and desired patterns. The deep learning model is trained using a large dataset consisting of simulated laser-patterning data and corresponding material properties.


 This encompasses the application of the deep learning model to optimize the laser-patterning process for various powdered materials, including metals, ceramics, and polymers. The model's performance is evaluated based on its ability to accurately predict the laser-patterning parameters and generate desired patterns on the powdered materials. The significance of this lies in its potential to revolutionize the manufacturing of powdered materials by providing a faster and more efficient approach. The use of deep learning techniques allows for the development of accurate prediction models, reducing the need for extensive trial-and-error experimentation. This leads to significant time and cost savings in the manufacturing process. The findings reveal the effectiveness of the deep learning model in accurately predicting laser-patterning parameters for powdered materials. The model demonstrates superior accuracy compared to traditional methods and achieves efficient computation times, making it highly suitable for advanced manufacturing applications.


The application of ultra-fast laser-patterning computation using a deep learning approach holds great promise for advanced manufacturing of powdered materials. The developed deep learning model provides accurate predictions of laser-patterning parameters, enabling efficient manufacturing processes and reducing costs. This research contributes to the field by introducing a novel approach that combines deep learning with laser-patterning computation, paving the way for future advancements in the manufacturing industry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Pandey , R. . (2018). Application of Ultra-Fast Laser-Patterning Computation for Advanced Manufacturing of Powdered Materials Using Deep Learning Approach. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(2), 714–724. https://doi.org/10.17762/turcomat.v9i2.13873
Section
Research Articles