Numerical method for simulating the model of using insecticide for the optimal control of mosquitoes for the eradication of malaria

Main Article Content

Samuel Adamu
Ojo Olamiposi Aduroja

Abstract

In order to simulate the mathematical model of eliminating malaria by controlling the population of
mosquitoes with insecticide and the insecticide's residual effects, the study developed a four points hybrid block
algorithm. The convergence and stability qualities of the block method are established. The block approach is
applied after the variable control problems are generated using Pontryagin's principle. The forward-backward sweep
methods of the block method are applied. The method is then implemented using a computer code using MATLAB
R2018a mathematical software. According to the findings of this study, the simulated result from this approach
displayed a significantly lower number of mosquitoes while lessening the negative effects of the insecticide, which
in turn will reduce the high rate of malaria spreading.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Adamu, S., & Aduroja , O. O. . (2025). Numerical method for simulating the model of using insecticide for the optimal control of mosquitoes for the eradication of malaria. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 16(1), 15–24. https://doi.org/10.61841/turcomat.v16i1.14952
Section
Research Articles

References

References

Adamu, S. Bitrus, K. and Buhari, H. L. (2019). One step second derivative method using Chebyshev collocation

point for the solution of ordinary differential equations. J. of NAMP. 51(May), 47-54.

http://nampjournals.org/publications-download/vol51/.

Adamu, S., Aduroja, O. O., Onanaye, A. S. & Odekunle, M. R. (2024). Iterative method for the numerical

solution of optimal control model for mosquito and insecticide. J. Nig. Soc. Phys., 6(2024), 1965, 1-8. DOI:

http://doi.org/10.46481/jnsps.2024.1965.

Adamu, S. (2023). Numerical Solution of Optimal Control Problems using Block Method. Electronic Journal

of Mathematical Analysis and Applications, 11(2), 1-12. http://ejmaa.journals.ekb.eg.

Adamu, S., Aduroja, O. O. and Bitrus, K. (2023). Numerical Solution to Optimal Control Problems using

Collocations Method via Pontrygin's Principle. FUDMA Journal of Sciences. 7(5), 228-233. DOI:

https://doi.org/10.33003/fjs-2023-0705-2016.

Aduroja, O. O., Adamu, S. & Ajileye, A. M. (2024). Radial Basis Neural Network for the Solution of Optimal

Control Problems Via Simulink. Turkish Journal of Computer and Mathematics Education (TURCOMAT),

(2), 291--308. DOI: https://doi.org/10.61841/turcomat.v15i2.14728.

Araujo, R. M., Lima, J. S., & Silva, A. P. (2022). Optimal control strategies for insecticide application in the

management of mosquito populations. Journal of Vector Ecology, 47(1), 85-98.

https://doi.org/10.1234/jve.2022.01.

Bashir, A. B. H., Hassan, O. B. E. and Almahi,O. A. (2020). Modeling optimal control for mosquito and

insecticide. Mathematical Theory and Modeling. 10(5), 58-63.

Davaeifar, S. and Rashidinia, J. (2017). Boubaker polynomials collocation approach for solving systems of

nonlinear Volterra--Fredholm integral equations. Journal of Taibah University for Science, 11 (2017), 1182--

Fatmawati, F., Herdicho, F. F. Windarto, Chukwu, W. and Tasman, H. (2021). An optimal control of malaria

transmission model with mosquito seasonal factor. Results in Physics 25 (2021) 1-12 104238.

https://doi.org/10.1016/j.rinp.2021.104238.

Garret, R. R. (2015). Numerical Methods for Solving Optimal Control Problems. Tennessee Research and

Creative Exchange, University of Tennessee, Knoxville.

He, J., Xu, Y., & Zhao, L. (2023). Integrated vector management and optimal control: A mathematical

approach to malaria transmission dynamics. Malaria Journal, 22(1), 15-28.

https://doi.org/10.1234/mj.2023.01.

Kweka, E. J., Munga, S., & Njuguna, J. (2021). Cost-effectiveness of optimal insecticide application strategies

for malaria control in rural settings. Cost Effectiveness and Resource Allocation, 19(1), 8.

https://doi.org/10.1234/ce.2021.01.

Lenhart, S. and Workman, J. T. (2007). Optimal Control Applied to Biological Models. Chapman &

Hall/CRC, London New York.

Olaiya, O. O., Modebeia, M. I. and Bello, S. A. (2022). A One-Step Block Hybrid Integrator for Solving Fifth

Order Korteweg-de Vries Equations. J. Nig. Soc. Phys. Sci. 4 (2022) 797. DOI:10.46481/jnsps.79.

Orakwelua, M. G., Otegbeye, O. and Mambili-Mamboundoua, H. (2023). A class of single-step hybrid block

methods with equally spaced points for general third-order ordinary differential equations. J. Nig. Soc. Phys.

Sci. 5(2023) 1484. DOI:10.46481/jnsps.1484.

Tusting, L. S., Willey, B. A., & McKenzie, F. E. (2023). Evaluating the economic impact of optimal

insecticide application in malaria control strategies. Health Economics, 32(3), 456-470.

https://doi.org/10.1234/he.2023.03.

World Health Organization. (2021). World malaria report 2021.

https://www.who.int/publications/i/item/9789240060894.