Quantum Computing Mathematical Foundations and Practical Implications

Main Article Content

Badri Vishal Padamwar
P. Hema Rao

Abstract

Quantum computing is a rapidly advancing field with the potential to revolutionize computation. This paper provides an overview of quantum computing, emphasizing its mathematical foundations and practical implications. We discuss key concepts from quantum mechanics that form the basis of quantum computing, such as superposition and entanglement, and explore quantum algorithms like Shor's algorithm and Grover's algorithm. The paper also examines the practical implications of quantum computing in cryptography, optimization, and machine learning, highlighting quantum key distribution, quantum annealing, and quantum neural networks. Furthermore, we discuss the challenges and future directions of quantum computing, including error correction, scalability, and achieving quantum supremacy. Addressing these challenges will pave the way for realizing the full potential of quantum computing and unlocking new possibilities in computation and simulation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Padamwar, B. V. ., & Rao, P. H. . (2020). Quantum Computing Mathematical Foundations and Practical Implications. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2911–2915. https://doi.org/10.61841/turcomat.v11i3.14659
Section
Research Articles

References

Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In

Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Vol. 175, pp. 8-

.

Bernstein, D. J., Buchmann, J., & Dahmen, E. (2009). Post-quantum cryptography. Springer Science & Business

Media.

Davisson, C. J., & Germer, L. H. (1927). The scattering of electrons by a single crystal of nickel. Nature,

(2998), 558-560.

Devitt, S. J., Munro, W. J., & Nemoto, K. (2016). Quantum error correction for beginners. Reports on Progress

in Physics, 76(7), 076001.

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint

arXiv:1411.4028.

Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface codes: Towards practical largescale quantum computation. Physical Review A, 86(3), 032324.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings, 28th Annual

ACM Symposium on the Theory of Computing (pp. 212-219).

Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., ... & Ladizinsky, E. (2011).

Quantum annealing with manufactured spins. Nature, 473(7346), 194-198.

López-Alt, A., Martín-Delgado, M. A., & Sornette, D. (2016). Quantum algorithms for fixed-qubit quantum

error correction. Quantum Information & Computation, 16(1-2), 1-34.

Mermin, N. D. (2007). Quantum computer science: An introduction. Cambridge University Press.

Montanaro, A. (2016). Quantum algorithms: an overview. npj Quantum Information, 2(1), 1-10.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University

Press.

Preskill, J. (2012). Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813.

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.

Schuld, M., Sinayskiy, I., & Petruccione, F. (2014). An introduction to quantum machine learning.

Contemporary Physics, 56(2), 172-185.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings

th Annual Symposium on Foundations of Computer Science (pp. 124-134). IEEE.

Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In

Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Vol. 175, pp. 8-

.

Bernstein, D. J., Buchmann, J., & Dahmen, E. (2009). Post-quantum cryptography. Springer Science & Business

Media.

Davisson, C. J., & Germer, L. H. (1927). The scattering of electrons by a single crystal of nickel. Nature,

(2998), 558-560.

Devitt, S. J., Munro, W. J., & Nemoto, K. (2016). Quantum error correction for beginners. Reports on Progress

in Physics, 76(7), 076001.

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint

arXiv:1411.4028.

Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface codes: Towards practical largescale quantum computation. Physical Review A, 86(3), 032324.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings, 28th Annual

ACM Symposium on the Theory of Computing (pp. 212-219).

Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., ... & Ladizinsky, E. (2011).

Quantum annealing with manufactured spins. Nature, 473(7346), 194-198.

López-Alt, A., Martín-Delgado, M. A., & Sornette, D. (2016). Quantum algorithms for fixed-qubit quantum

error correction. Quantum Information & Computation, 16(1-2), 1-34.

Mermin, N. D. (2007). Quantum computer science: An introduction. Cambridge University Press.

Montanaro, A. (2016). Quantum algorithms: an overview. npj Quantum Information, 2(1), 1-10.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University

Press.

Preskill, J. (2012). Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813.

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.