Mathematical Aspects of Machine Learning: A Comprehensive Review

Main Article Content

Badri Vishal Padamwar
P. Hema Rao

Abstract

Machine learning is a rapidly evolving field that relies heavily on mathematical principles and techniques. In this paper, we provide a comprehensive review of the mathematical aspects of machine learning, focusing on key concepts and their applications in various machine learning algorithms. We begin by discussing the basic concepts and terminology of machine learning, followed by an exploration of linear algebra, calculus, probability theory, and information theory in the context of machine learning. We then present case studies and applications of machine learning in image recognition, natural language processing, recommender systems, and autonomous vehicles. Finally, we discuss the current limitations of mathematical models in machine learning, emerging trends in mathematical research, and the ethical and societal implications of machine learning. This paper aims to provide a foundational understanding of the mathematical principles underlying machine learning and their significance in advancing the field.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Padamwar, B. V. ., & Rao, P. H. . (2020). Mathematical Aspects of Machine Learning: A Comprehensive Review. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(1), 1679–1685. https://doi.org/10.61841/turcomat.v11i1.14631
Section
Research Articles

References

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

https://doi.org/10.1109/TPAMI.2013.50

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

https://doi.org/10.1038/nature14539

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). MIT Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference,

and prediction (2nd ed.). Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification (2nd ed.). Wiley.

Mitchell, T. M. (1997). Machine learning. McGraw Hill.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet large

scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252.

https://doi.org/10.1007/s11263-015-0816-y

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 1-9). https://doi.org/10.1109/CVPR.2015.7298594

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).

Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words

and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-

.

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp.

-1543).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473.

Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks.

In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015).

Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.

https://doi.org/10.1038/nature14236

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., ... & Dieleman, S. (2016).

Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

https://doi.org/10.1038/nature16961

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural

networks. In Advances in neural information processing systems (pp. 1097-1105).

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal

Processing, 45(11), 2673-2681.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).

Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).