CEFTRIAXONE BLOCKS THE POLYMERIZATION OF Α-SYNUCLEIN AND EXERTS NEUROPROTECTIVE EFFECTS IN VITRO

Main Article Content

G. Vidhya
J. Anitha
A Santhosh Yadav

Abstract

The β-lactam antibiotic ceftriaxone was suggested as a therapeutic agent in several neurodegenerative disorders, either for its ability to counteract glutamate-mediated toxicity, as in cerebral ischemia, or for its ability to enhance the degradation of misfolded proteins, as in Alexander’s disease. Recently, the efficacy of ceftriaxone in neuroprotection of dopaminergic neurons in a rat model of Parkinson’s disease was documented. However, which characteristics of ceftriaxone mediate its therapeutic effects remains unclear. Since, at the molecular level, neuronal α-synuclein inclusions and pathological α-synuclein transmission play a leading role in initiation of Parkinson-like neurodegeneration, we thought of investigating, by circular dichroism spectroscopy, the capability of ceftriaxone to interact with α- synuclein. We found that ceftriaxone binds with good affinity to α-synuclein and blocks its in vitro polymerization. Considering this finding, we also documented that ceftriaxone exerts neuroprotective action in an in vitro model of Parkinson’s disease. Our data, in addition to the findings on neuroprotective activity of ceftriaxone on Parkinson-like neurodegeneration in vivo, indicates ceftriaxone as a potential agent in treatment of Parkinson’s disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Vidhya, G., Anitha, J., & Yadav, A. S. (2019). CEFTRIAXONE BLOCKS THE POLYMERIZATION OF Α-SYNUCLEIN AND EXERTS NEUROPROTECTIVE EFFECTS IN VITRO. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(3), 1232–1242. https://doi.org/10.61841/turcomat.v10i3.14463
Section
Research Articles

References

Nau, R., Prange, H. W., Muth, P., Mahr,

G., Menck, S., Kolenda, H., and Sorgel,

F. (1993) Passage of cefotaxime and

ceftriaxone into cerebrospinal-fluid of

patients with uninflamed meninges.

Antimicrob. Agents Chemother. 37,

−1524.

Rothstein, J. D., Patel, S., Regan, M. R.,

Haenggeli, C., Huang, Y. H., Bergles, D.

E., Jin, L., Hoberg, M. D., Vidensky, S.,

Chung, D. S., Toan, S. V., Bruijn, L. I.,

Su, Z. Z., Gupta, P., and Fisher, P. B.

(2005) β-Lactam antibiotics offer

neuroprotection by increasing glutamate

transporter expression. Nature 433,

−77.

Bachetti, T., Di Zanni, E., Balbi, P.,

Bocca, P., Prigione, I., Deiana, G. A.,

Rezzani, A., Ceccherini, I., and Sechi, G.

(2010) In vitro treatments with

ceftriaxone promote elimination of

mutant glial fibrillary acidic protein and

transcription down-regulation. Exp. Cell

Res. 316, 2152−2165.

Sechi, G., Matta, M., Deiana, G. A.,

Balbi, P., Bachetti, T., Di Zanni, E.,

Ceccherini, I., and Serra, A. (2010)

Ceftriaxone has a therapeutic role in

Alexander disease. Prog. NeuroPsychopharmacol. Biol. Psychiatry 34,

−417.

Sechi, G. P., Ceccherini, I., Bachetti, T.,

Deiana, G. A., Sechi, E., and Balbi, P.

(2013) Ceftriaxone for Alexander’s

disease: a four-year follow-up. JIMD

Rep. 9, 67−71.

Leung, T. C. H., Lui, C. N. P., Chen, L.

W., Yung, W. H., Chan, Y. S., and Yung,

K. K. L. (2012) Ceftriaxone ameliorates

motor deficits and protects dopaminergic

neurons in 6-hydroxydopamine-lesioned

rats. ACS Chem. Neurosci. 3, 22−30.

Ozansoy, M., and Basak, A. N. (2012)

The central theme of Parkinson’s disease:

α-synuclein. Mol. Neurobiol. 47,

−465.

Sechi, G., Balbi, P., Bachetti, T., and

Ceccherini, I. (2011) Safe drugs to fight

mutant protein overload and α-1-

antitrypsin deficiency. J. Hepatol. 55,

−950.

Spillantini, M. G., Schmidt, M. L., Lee,

V. M. Y., Trojanowski, J. Q., Jakes, R.,

and Goedert, M. (1997) α -Synuclein in

Lewy bodies. Nature 388, 839−840.

Luk, K. C., Kehm, V., Carroll, J., Zhang,

B., O’Brien, P., Trojanowski, J. Q., and

Lee, V. M. Y. (2012) Pathological α –

synuclein transmission initiates

Parkinson-like neurodegeneration in

nontransgenic mice. Science 338,

−953.

Grau, C. M., and Greene, L. A. (2012)

Use of PC12 cells and rat superior

cervical ganglion sympathetic neurons as

models for neuroprotective assays

relevant to Parkinson’s disease. In

Neurotrophic Factors: Methods and

Protocols (Series: Methods in Molecular

Biology), Vol. 846, pp 201−211,

Springer, New York.

Bartolini, M., Bertucci, C., Bolognesi, M.

L., Cavalli, A., Melchiorre, C., and

Andrisano, V. (2007) Insight into the

kinetic of amyloid β(1−42) peptide selfaggregation: Elucidation of inhibitors’

mechanism of action. ChemBioChem 8,

−2161.

Smith, N. W., Annunziata, O., and

Dzyuba, S. V. (2009) Amphotericin B

interactions with soluble oligomers of

amyloid A beta 1−42 peptide. Bioorg.

Med. Chem. 17, 2366−2370.

Marchiani, A., Mammi, S., Siligardi, G.,

Hussain, R., Tessari, I., Bubacco, L.,

Delogu, G., Fabbri, D., Dettori Maria, A.,

Sanna, D., Dedola, S., Serra Pier, A., and

Ruzza, P. (2013) Small molecules

interacting with α-synuclein:

antiaggregating and cytoprotective

properties. Amino Acids 45, 327−338.

Huang, C. Y. (1982) Determination of

binding stoichiometry by the continuous

variation method: the Job plot. Methods

Enzymol. 87, 509−525.