Alzheimer's Disease Detection using Gaussian Kernel Based Fuzzy C-Means Clustering Algorithm
Main Article Content
Abstract
The most prevalent cause of dementia in older people is Alzheimer's disease (AD). Dementia is a neurological disease that severely limits a person's capacity to do everyday tasks. The importance of early Alzheimer's disease diagnosis can be attributed to several factors. Most of them provide for Alzheimer's disease therapies that can slow down the disease's development. The CT scan reveals a degree of generalized cortical atrophy in Alzheimer's disease patients. As a result, CT scan picture processing is critical in the early detection of Alzheimer's disease. Here, image processing is used to detect the objects in CT pictures. Edge detection is a critical first phase in image processing since it defines the discontinuities in gray-level images. The majority of them are clinic-based structural MRI images with small sample size and few scanning layers. Deep learning, on the other hand, necessitates a large amount of annotated details. This paper suggests a dataset increment approach based on a weighted mixture of positive and negative tests and a learning method with a limited number of samples to meet the realistic requirements of clinical evaluation of Alzheimer's disease. It produces a GKFCM Clustering model that can collect more image feature details and boost the model's generalization ability.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.