Common Fixed Point Theorems For Weakly Compatible Mappings In Symmetric Spaces

Main Article Content

A.K. GOYAL

Abstract

In this paper some common fixed point theorem has been established by using weakly compatible mappings and E.A property which improves and extends similar known results in the literature.
Key words: Symmetric spaces, common fixed points, weakly compatible mappings.
2010 AMS SUBJECT CLASSIFICATION CODE : 54H25, 47H10

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
GOYAL, A. (2020). Common Fixed Point Theorems For Weakly Compatible Mappings In Symmetric Spaces. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2230–2234. https://doi.org/10.61841/turcomat.v11i3.13823
Section
Research Articles

References

. Aamari, M. and Moutawakil, D.EI., “Some new common fixed point theorem under strict contractive

conditions”, J. Math. Anal. Appl., 270(1), 181–188, 2002.

. Aamri, M. and Moutawakil, D.El., “Common fixed points under contractive conditions in semi–metric space”,

Appl. Math. E–Notes, 3, 156–162, 2003.

. Banach, S., “Sur les operations dans les ensembles abstraits et leur applications aux equations integrals”,

Fundamental Mathematicae, 3(7), 133–181, 1922.

. Cho, S.H. and Kim, D.J., “Fixed Point theorems for generalized contractive type mappings in symmetric space”,

Korean J. Math. Appl., 16, 439–450, 2008.

. Cho, S.H., Lee, G.Y. and Bae, J.S., “On coincidence and fixed point theorems in symmetric space”, Fixed Point

Theory and Appl, 9 pages, Art.ID 562130, 2008.

. Cicchese, M., “Questioni di comptetezza e contrazioni in spazi metrici generalization”, Boll. Un. Mat. Ital., 13–

A(5), 175–179, 1976.

. Jungck, G., “Compatible mappings and common fixed point”, Internet. J. Math and Math. Sci., 9 (4), 771–779,

. Menger, K., “Untersuchungen uber allgemeine”, Math. Annalen, 100, 75–163, 1928.

. Pant, R.P. and Pant, V., “Common fixed point under strict contractive condition”, J. Math. Anal. Appl., 248(1),

–332, 2000.

. Wilson, W.A., “On semi–metric space”, Amer. J. Math., 53, 361–373, 1931.

Similar Articles

You may also start an advanced similarity search for this article.