Common Fixed-Point Theorems for Six Mappings in Symmetric Spaces

Main Article Content

A.K. Goyal
Neelmani Gupta

Abstract

In this paper, we establish a common fixed-point theorem for six mappings in symmetric spaces with compatible mapping of type (E) and occasionally weakly compatible mappings. Our work extends the results of Rajopadhyaya et al. [23,25], Aamri and Moutawakil [2] and other similar results in semi-metric space.


 


2020 Mathematical Sciences Classification: 54H25, 47H10

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Goyal, A., & Gupta, N. . (2022). Common Fixed-Point Theorems for Six Mappings in Symmetric Spaces. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(1), 507–515. https://doi.org/10.61841/turcomat.v13i1.14635
Section
Research Articles

References

Aamari, M. and Moutawakil, D.EI., “Some new common fixed point theorem under strict contractive conditions”,

J. Math. Anal. Appl., 270(1), 181–188, 2002.

Aamri, M. and Moutawakil, D.El., “Common fixed points under contractive conditions in semi–metric space”,

Appl. Math. E–Notes, 3, 156–162, 2003.

Banach, S., “Sur les operations dans les ensembles abstraits et leur applications aux equations integrals”,

Fundamental Mathematicae, 3(7), 133–181, 1922.

Cho, S.H. and Kim, D.J., “Fixed Point theorems for generalized contractive type mappings in symmetric space”,

Korean J. Math. Appl., 16, 439–450, 2008.

Cho, S.H., Lee, G.Y. and Bae, J.S., “On coincidence and fixed point theorems in symmetric space”, Fixed Point

Theory and Appl, 9 pages, Art.ID 562130, 2008.

Cicchese, M., “Questioni di comptetezza e contrazioni in spazi metrici generalization”, Boll. Un. Mat. Ital., 13–

A(5), 175–179, 1976.

Ciric, Lj.B., “Generalized contractions and fixed point theorems”, Publ. Inst. Math, 26, 115-148, 1963.

Fisher, B., “Common fixed points of four mappings”, Bull. Inst. Math. Acad. Sinica., 11, 101–113, 1983.

Frechet, M., “Sur quelques points du calcul fonctionnnel”, Rend. Circ. Mat. Palermo, 22, 1–74, 1906.

Goyal, A.K., “Common fixed point theorems for six mappings in metric spaces”, Bull. Pure Appl. Math., 3 (1),

–35, 2009.

Goyal, A.K., “Common Fixed Point Theorems For Weakly Compatible Mappings in Symmetric Spaces”, Turkish

Journal of Computer and Mathematics Education 11 (3), 2230–2234, 2020.

Hicks, T.L. and Rhoades, B.E., “Fixed point theory in symmetric space with applications to probabilistic space”,

Nonlinear Anal., 36, 331–334, 1999.

Imdad, M. and Ali, J., “Common fixed point theorems in semi–metric space employing a new implicit fucntion

and common property (E.A)”, Bull. Belgium Soc. Simon Stevin, 16, 421–433, 2009.

Imdad, M., Ali, J. and Khan, L., “Coincidence and fixed points in semi–metric spaces under strict conditions”, J.

Math. Anal. Appl., 320(1), 352–360, 2006.

Imdad, M. and Khan, Q.H., “Six mappings satisfying a rational inequality”, Radovi Matematicki, 9, 251–260, 1999.

Jha, K., Imdad, M. and Rajopadhyaya, U., “Fixed point theorems for occasionally weakly compatible mappings in

semi–metric space”, Annals of Pure and Appl. Maths., 5(2), 153–157, 2014.

Jha, K., Imdad, M. and Rajopadhyaya, U., “Common fixed point theorem for generalized contractive type

mappings in semi–metric space, Int. J. Math. Sci. Engg. Appls., 81, 139–146, 2014.

Jungck, G., “Compatible mappings and common fixed point”, Internet. J. Math and Math. Sci., 9 (4), 771–779,

Jungck, G. and Rhoades, B.E., “Fixed points for set–valued function without continuity”, Ind. J. Pure Appl. Math.,

(3), 227–238, 1998.

Jungck, G. and Rhoades, B.E., “Fixed point theorem for occasionally weakly compatible mappings”, Fixed Point

Theory, 7, 280–296, 2006.

Menger, K., “Untersuchungen uber allgemeine”, Math. Annalen, 100, 75–163, 1928.

Pant, R.P. and Pant, V., “Common fixed point under strict contractive condition”, J. Math. Anal. Appl., 248(1),

–332, 2000.

Rajopadhyaya, U., Jha, K. and Imdad, M., “Common fixed point theorem in semi–metric space with compatible

mapping of type (E)”, Bull. Math. Sci. and Appl., 3(3), 63–67, 2014.

Rajopadhyaya, U., Jha, K. and Kumar, P., “A Common fixed point theorem for weakly compatible mappings in

fuzzy semi–metric space”, J. Maths and System Sci., 4,720–724, 2014.

Rajopadhyaya, U., Jha, K. and Pant, R.P., “A common fixed point theorem in semi–metric space using E.A

Property”, Electronic J. Maths. Anal. and Appl., 31, 19–23, 2015.

Singh, M.R. and Singh, M.Y., “Compatible mappings of type (E) and common fixed point theorems of Meir–

keeler type”, Internat. J. Math. Sci. and Engg. Appl., 2, 299–315, 2007.

Wilson, W.A., “On semi–metric space”, Amer. J. Math., 53, 361–373, 1931.