Anomaly Detection in Industrial Control Systems using Machine Learning Techniques
Main Article Content
Abstract
Machine learning techniques are being widely used to identify and respond to unusual events in industrial controls systems (ICS), where they play a vital role in preventing potential catastrophes. This paper reviews the various techniques that are used in anomaly detection in these systems. The paper discusses the definition of an anomaly detection process and provides a comprehensive review of the various techniques involved in this area. It also explores the applications of machine learning and statistical techniques in this domain. Some of the techniques that are commonly used in this area include clustering, decision trees and random forests, and control charts. The paper also covers the applications and challenges of anomaly detection in different industrial control systems such as water treatment plants, power grid systems, and chemical plants. Case studies are presented to demonstrate the effectiveness of learning-based techniques in identifying anomalies in these facilities. The paper also presents an evaluation of the performance of various machine learning techniques in performing anomaly detection. The evaluation metrics that are used in these experiments include false positive rate, accuracy, recall, area under receiver characteristic curve, and F1 score. The paper concludes by providing a summary of the findings of the review and the future directions of the investigation in anomaly detection for industrial control systems. The paper offers valuable insights into the latest state-of-art techniques in this area, and it can help practitioners and researchers make informed decisions when it comes to choosing the appropriate ones for their specific projects.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.