Analysis of Fraud Detection on Credit Cards using Data Mining Techniques
Main Article Content
Abstract
Credit cards are widely used and accepted in the financial sector all over the world. The latest trend is to use electronic payments and to go cashless. Unfortunately, these credit card-based online transactions and cashless payments invite online fraudsters, who then attack all forms of online payment, including shopping sites and banking services. According to polls, approximately 4 billion people are presently affected by credit card fraud detection, and by 2025, that figure is projected to increase to 8 billion. Concern for its detection has increased as a result of this worrying pace. Both research scholars and industry experts have contributed their effort in this area for this goal. When considering the credit card detection method, its detection largely becomes a difficult problem. Due mostly to its unstable nature and dependence on customer behaviour, and secondarily because the dataset is readily available and easily accessible. This causes the dataset to become imbalanced, which makes it harder for a researcher to find instances of credit card fraud. Implementations of data mining algorithms are suitable for overcoming such difficulties. As a result, applying the proposed thesis necessitates using the random forest, decision trees, logistic regression, and Naive Bayes. The paper also proposes the use of a stacking algorithm, which integrates the basic theories of decision trees, logistic regression, and random forests, in addition to datamining techniques. According to experimental study of the aforementioned classifiers, the stacking algorithm produced an optimum model with exact precisions and generated the greatest accuracy of 97.78%.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.