Evaluation of Back Propagation-Artificial Neural Network (BP-ANN) Fit Rate and Types of Vector Machine Algorithms in Estimating the Bankruptcy Prediction of Companies Listed on Tehran Stock Exchange
Main Article Content
Abstract
The accurate estimation of the bankruptcy prediction is an issue that has been increasingly considered regarding the importance of companies' bankruptcy prediction from investors, companies and banks (determining credit risk). However, determining new mathematical techniques that can provide a higher fit rate for this prediction requires further researches and comparisons of algorithms fit. Accordingly, the present study aimed at comparing the fit rate in vector machine algorithms and artificial neural network (ANN) to determine the companies' bankruptcy prediction in the coming years. The financial statements of companies over 2011-2019 (end of 2019) were reviewed to collect data. Article 141 of the Commercial Code was used to determine the bankrupt companies. Then, the desired algorithms were implemented by MATLAB software. The results showed that the support vector machine algorithms had a higher fit rate in estimating the companies' bankruptcy prediction (the maximum difference in model fit was 6%).
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.