Transdermal Penetrating Peptide Conjugated Liposomes as Drug Delivery Carrier Comprising Macromolecules
Main Article Content
Abstract
: The aim of the study was to investigate a system using liposomes and cell penetrating peptides (CPP) for optimal transdermal delivery of macromolecules. Typical DOPE liposomes were prepared with lipid mixture (DOPE:PC:Chol = 1.5:1.5:2.0, molar ratio) and active materials (Rhodamine B; MW ~480 and Dextran-RITC; MW ~10,000). CPP-conjugated DOPE liposomescontaining active materials were prepared by conjugating the peptide to DOPE liposomes (DOPE:PC:Chol:DSPE-PEG-Mal = 1.5:1.1:2.0:0.2 or 0.4, molar ratio). Physical properties of both liposomes were evaluated, including particle size and zeta potential. The particle sizes of typical liposome and CPP-DOPE liposome were approximately 100 nm, and the zeta potential values of both liposomes were approximately -25mV and over +11mV respectively. Moreover, cellular uptake efficiency was assessed by flow cytometry (FACS). CPP-conjugated liposomes resulted higher cellular uptake efficiency compared to typical DOPE liposomes, showing higher fluorescent intensity in CPP-DOPE liposomes. In confocal laser scanning microscope (CLSM) studies, both cellular uptake and skin permeation were visually estimated. In the case of Rhodamine B, having a relatively small molecular weight,absorption into the cell was successful, and showed the highest rate of cellular uptake with CPP-DOPE liposomes. Dextran-RITC, a macromolecule with a relatively bigger molecular weight, showed similar results to Rhodamine B. In terms of skin permeation, CPP-DOPE liposomes containing Rhodamine B showed noticeable skin absorption after 4 and 18 hours, and the permeation range was wider and thicker than that with typical liposomes. For Dextran-RITC, with typical DOPE liposome, it was hardly permeable through the skin, but with CPP-DOPE liposomes, on the other hand, the skin permeations after 4 and 18 hours were remarkable. The improved cellular uptake and skin permeation of the CPP-conjugated liposomes are due to the cationic arginine-rich peptide. In vivo studies also proved that the CPP-conjugated liposomes are superior in depigmentation and anti-wrinkle studies than typical liposomes. These results demonstrate that the CPP-conjugated liposomes could also be effective for transdermal drug delivery of antioxidant and anti-aging therapeutics.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.