Missing Data Imputation using Multiple Imputation with Adaptive LASSO for Parkinson’s Disease Data
Main Article Content
Abstract
Nerve cells are the brain's building blocks for the nervous system. Once destroyed, they do not regenerate. When these nerve cells are damaged, the dopamine they contain is depleted, causing motor abilities and speech to deteriorate. Before the brain cells are impaired, the voice goes through a series of modifications. Voice shifts assist in the early detection of Parkinson's disease, avoiding injury to brain cells that would result in decreased balance and movement. However, this condition often suffers from missed data in clinical outcomes due to a variety of factors such as dropout, illness, and so on. Hence, imputation of these kinds of missing data is always performed prior to performing an intent-to-treat study. Indeed, predictive analysis of data relating to disease will not be feasible without the use of a suitable framework that efficiently manages missing data. The paper proposes an Adaptive LASSO Imputation approach based on item answer theory, which allows multiple imputations to be done when working with multiple sources of correlation. The accuracy of each imputation procedure was assessed using the Root Mean Square Error (RMSE) and Mean Absolute Error. The proposed method is applied on three types of Missing Data i.e MAR, MCAR, NMAR. The outcomes demonstrated that the suggested approach outperforms all other algorithms.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.