App store bugs-review classification using BERT- DNN model
Main Article Content
Abstract
There so many applications available on the internet (Especially in Google play store), which many are using for all types of different purposes. Many users gives their reviews about the applications they used like their experience, the issues they face, the updates which will be helpful for them, etc. All of these reviews should be analysed so that the developer can improve the applications by adding required updates needed by the users, and fixing issues faced by the users. For this purpose we need to analyse the reviews in an efficient manner which will save more time and improve their applications. In this project we are doing classification of bugs in reviews with the help of encoder based BERT(Bidirectional Encoder Representations from Transformers) model,which have been very popular in natural language processing, has been widely used now a days. This will help us to classify the reviews in a manner that we can identify positive and negative reviews which will help the developers to find the bugs. The reports that are under negative and neutral reviews are considered for bugs. It is found that BERT model is much efficient in text classification so it will be very well suitable for review based classification. There four different phases in this project first one is the data exploration, then we pre-process the data, and then do feature selection, finally we classify the reviews using BERT model.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.