Face Spoofing Detection Using Deep CNN
Main Article Content
Abstract
3D mask face spoofing attack is an important challenge in recent years and draws further study. Because of the number of deficiencies and small differences in the database, however, a few methods can be proposed to aim at it meanwhile, most developed databases are focused on countering various types of threats and neglect environmental developments in implementations in the real world. The 3D mask against spoofing is used in this paper to simulate the real-world scenario with other options. The database used in the proposed method includes 10 different subject masks (7 subject 3D latex masks and 2 subjects for 2D paper masks and 1 for half mask from below the eye is using to testing the result). Therefore, the total size is 440 videos 400 is fake videos, and 40 is a real video. The directions for future study are shown in the benchmarking experiments. We intend to release the database platform to evaluate various methods this system has been used for a deep Convolution neural network. The result is robust for an eye-blink recognition technique. There are three basic steps in the proposed system: Firstly, video pre-processing, facial recognition, and finally, the output step whether the video is true or falsified. The method used is stronger than most techniques. The suggested approach in this study was used for the MLFP dataset and was very reliable and accurate as a result of the whole experiment and the accuracy obtained is (99.88).
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.