Speaker Identification using Multi Methods of Features Extraction
Main Article Content
Abstract
The primary challenge in identifying speakers is extracting recognition features from speech signals to optimize classification algorithms' performance. Several methods are proposed in this article for extracting differential features from an audio signal in order to classify the speaker. The following methods were used to obtain the features of the audio signal in this approach: Power Spectral Density (PSD), Short Term Energy (STE), Fast Fourier Transform (FFT), Hue Seven Moment Invariants method (HSMI), Mel Frequency Cepstrum Coefficients (MFCC), cross-correlation estimates of MFCC (XCORR), and Linear predictive coding (LPC). The classification methods in this paper are the artificial neural network (ANN), the Euclidean distance, and the autocorrelation, where the results obtained from the experiments showed that the accuracy rate is more than 96%.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.