Graph-Based Representation Of Syntactic Structures Of Natural Languages Based On Dependency Relations
Main Article Content
Abstract
Deep Learning approach using probability distribution to natural language processing achieves significant accomplishment. However, natural languages have inherent linguistic structures rather than probabilistic distribution. This paper presents a new graph-based representation of syntactic structures called syntactic knowledge graph based on dependency relations. This paper investigates the valency theory and the markedness principle of natural languages to derive an appropriate set of dependency relations for the syntactic knowledge graph. A new set of dependency relations derived from the markers is proposed. This paper also demonstrates the representation of various linguistic structures to validate the feasibility of syntactic knowledge graphs.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.