An Effective CNN based Feature Extraction Approach for Iris Recognition System
Main Article Content
Abstract
Biometrics are playing an important role in security. Biometrics based on computer vision includes facial recognition, fingerprints, and iris to create efficient authentication systems. Iris identification is one of the best methods for providing individuals with unique authentication based on their IRIS structure. In this work, accurate iris recognition is based on pre-processing techniques, segmentation using Circular Hough transform along with canny edge detector, and normalization by daugman’s process. Using Convolutional Neural Networks, the suggested system is trained to extract features of normalized input iris images. This is followed by the Softmax classifier to classify into one out of 224 classes from the IITD iris dataset along with108 classes from the CASIA V1 iris dataset. It can be concluded that the performance of our proposed system is influenced by the choice of hyper parameters and tuning of its deep networks and optimizers. By achieving 98 % and 95.4 % accuracies respectively, it outperforms current methods.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.