Performance Improvement of Classification Model with Imbalanced Dataset Classification models based on machine learning for the application of real life carry out classification tasks using real life dataset. Classification models have class imbalance pro
Main Article Content
Abstract
Classification models based on machine learning for the application of real life carry out classification tasks using real life dataset. Classification models have class imbalance problems when the dataset is imbalanced in nature. Classification models show biases for performing the classification towards the majority class due to class imbalance issues. The purpose of the study is to examine and control the class imbalance problem using the cluster centroid undersampling technique with the motive of improving the performance of machine learning classification. In order to accomplish the goal, this study performs experimental analysis for examining and controlling the class imbalance problem before and after applying the cluster centroid undersampling technique on imbalanced dataset. The experimental study is performed by using five different imbalanced datasets, cluster centroid undersampling technique and decision tree classification model. The results of this study are promising that supports this study and confirm that the class imbalance problem can be handled using undersampling techniques very effectively with performance improvement of a classifier from 11% to 67%. This study highlights the influences of class imbalance problems on machine learning classification models and experimental results with analysis provide an appropriate conclusion with an improvement in the performance of machine learning based classification models.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.