Deep Learning-Based Diagnosis Of Schizophrenia
Main Article Content
Abstract
People from different age groups suffer from a variety of mental health disorders but most of these come without a cause and are very difficult to cure. One such disorder is Schizophrenia. More than 20 million people around the world suffer from this disorder. In order to get a better understanding of such mental health disorders and to help in the study of the cure, here the EEG of the affected and normal patients are studied and classified. The intelligence of Neural Networks is deployed in the classification of the EEG signals as they provide a wide variety of algorithms to extract the features and to classify the data which in turn helps in the process of identification of abnormalities present in the EEG signal of the schizophrenic subjects when compared to normal subjects. Here, the LSTM algorithm which is a type of RNN architecture is deployed to classify the EEG of schizophrenic subjects and normal subjects. Further, the EEG signal is pre-processed using various techniques and the data is cleaned to study the major brain waves of the EEG signal and the absolute and relative power of each of the brain waves is calculated and graphically observed to understand the behaviour of the EEG of Schizophrenic subjects and to propose therapeutic guidance to relieve such patients from stress.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.