Soc Estimation Of Li-Ion Battery Of Electric Vehicle Based On Ekf
Main Article Content
Abstract
Due to the rising concern about global warming and depletion of fossil fuels, electric vehicles powered by lithium batteries are expected to become more popular over the next decade. Effective battery management relies on precise inference of state-of-charge (SoC) parameter which alerts drivers of their vehicle’s range capability. SOC is a demanding battery monitoring parameter and has a high impact on predicting the vehicle mileage, boosting battery life, and enhancing electric vehicle performance. In this work, a novel SOC prediction model based on Extended Kalman Filter (EKF) integrated with Thevenin equivalent battery circuit model is proposed. First, the LI battery is modeled in MATLAB/SIMULINK using a first - order resistor-capacitor (RC) equivalent circuit and battery parameters are calculated by conducting a pulse discharge test. As the battery’s discharge characteristics are nonlinear, EKF is preferred over simple Kalman Filter. The EKF algorithm is simulated under MATLAB environment. The actual SoC of the cell is obtained from the lithium-ion cell model and the estimated SoC is obtained from output of the EKF block. When compared it was found that the estimated value following the actual value with an error of 0.01. The findings demonstrate that the algorithm has good robustness that can match the functional requirements of technological applications.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.