Improved Convolutional Neural Networks for the Classification of the Hyperspectral Image
Main Article Content
Abstract
In recent times, convolutional neural network (CNN) provides improved performance on various image processing analysis. This includes classification of images even with redundant information over various imaging application. With such aim, in this paper, the hyperspectral images are classified using CNN in spectral domain. The CNN architecture includes five different layers enables the classification of data samples by the CNN classifiers and discards redundant information. The experimental results test the efficacy of the model, where the results show that the CNN obtains higher classification accuracy than other methods.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.