Sarcasm Detection From Twitter Database Using Text Mining Algorithms

Main Article Content

Tamanna Siddiqui, et. al.

Abstract

Sarcasm is well-defined as a cutting, frequently sarcastic remark intended to fast ridicule or dislike. Irony detection is the assignment of fittingly labeling the text as’ Sarcasm’ or ’non- Sarcasm.’ There is a challenging task owing to the deficiency of facial expressions and intonation in the text. Social media and micro-blogging websites are extensively explored for getting the information to extract the opinion of the target because a huge of text data existence is put out into the open field into social media like Twitter. Such large, openly available text data could be utilized for a variety of researches. Here we applied text data set for classifying Sarcasm and experiments have been made from the textual data extracted from the Twitter data set. Text data set downloaded from Kaggle, including 1984 tweets that collected from Twitter. These data already have labels here. In this paper, we apply these data to train our model Classifiers for different algorithms to see the ability of model machine learning to recognize sarcasm and non-sarcasm through a set of the process start by text pre-processing feature extraction (TF-IDF) and apply different classification algorithms, such as Decision Tree classifier, Multinomial Naïve Bayes Classifier, Support vector machines, and Logistic Regression classifier. Then tuning a model fitting the best results, we get in (TF-IDF) we achieve 0.94% in Multinomial NB, Decision Tree Classifier we achieve 0.93%, Logistic Regression we achieve 0.97%, and Support vector machines (SVM) we achieve 0.42%. All these result models were improved, except the SVM model has the lowest accuracy. The results were extracted, and the evaluation of the results has been proved above to be good in accuracy for identifying sarcastic impressions of people.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
et. al., T. S. . (2021). Sarcasm Detection From Twitter Database Using Text Mining Algorithms . Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 1916–1924. https://doi.org/10.17762/turcomat.v12i11.6144
Section
Research Articles