Using Cauchy Distribution To Estimate Survival Function
Main Article Content
Abstract
This paper intends to estimate the unlabeled two parameters for Cauchy distribution model depend on employing the maximum likelihood estimator method to obtain the derivation of the point estimators for all unlabeled parameters depending on iterative techniques , as Newton – Raphson method , then to derive “Lindley approximation estimator method and then to derive Ordinary least squares estimator method. Applying all these methods to estimate related probability functions; death density function, cumulative distribution function, survival function and hazard function (rate function)”.
“When examining the numerical results for probability survival function by employing mean squares error measure and mean absolute percentage measure, this may lead to work on the best method in modeling a set of real data”
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.