An Approach For Finding Emotions Using Seed Dataset With Knn Classifier
Main Article Content
Abstract
Emotions are an indispensable component of our daily lives. Nonetheless, brain-computer interface (BCI) systems have not achieved the requisite level to interpret emotions. Programmed feeling acknowledgment based on BCI frameworks has been a point of extraordinary inquiry within the final few decades. Electroencephalogram (EEG) signals are one of the significant assets for these frameworks EEG may be a physiological flag recorded from brain work out within the frame of brain waves through the scalp. The most advantage of utilizing EEG signals is that it reflects the genuine feeling and can effectively be prepared by computer frameworks. A dummy dataset can be used and filled with EEG data to compute and categorize these signals generated from EEG signals. The dataset used here is Seed, and it can be accustomed by a machine learning technique called the K-nearest neighborhood (KNN) algorithm to systematize the data. Experimental performance achieved through the categorizing values of 94.06% during the classification in the Seed. This proposed method shows that emotion recognition like positive, neutral, and negative is possible through EEG signals.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.