Ensemble Machine Learning Modelling for Medium to Long Term Energy Consumption Forecasting
Main Article Content
Abstract
Electricity demand forecasting is an important research area that is gaining popularity among researchers these days. Forecasting energy consumption is a critical task as it affects the overall functioning of the power industry. There are many types of research already done in the field of short-term energy forecasting, but there is a scarcity of researches in medium to long-term energy forecasting. This paper focuses on medium to long-term energy forecasting using machine learning and the ensemble approach. The machine learning methods include Linear Regression (LR), Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Gradient Boosting Regressor (GBR). For the comparative analysis the performance metric selected are R2, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE)..
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.