Depression Level Calculation for Predicting Child Psychometric Retardation using DepressNet Approach through GPU Accelerated Google Cloud Platform
Main Article Content
Abstract
From the past decades, depression has become a common threat for everyone. Doctors often ignore the intellectual disability of young children. This happens as a single discovery or as a part of the problem in 2% to 3% of the population. There are many reasons for the widespread syndrome or mental disability. Among the observed patient data 30% - 50% of cases, cannot be determined by the doctor about the cause despite through examination. The diagnosis mainly depends on a complete personal family medical history, a complete physical examination, and a careful evaluation of the child's development. Being able to deal with these intermediate stages of emotions will be an easier preventive measure. This measure will also help to build a healthy society. There must be a way that does not compromise people's privacy. Human-computer Interaction (HCI) along with Machine Learning algorithms paved the way for finding solution for certain children with depression. One can analyse these issues of depression prediction among children easily with the process of image detection. The goal at the beginning of the project was to create a reliable toolkit for children. Data sets from sources such as AVEC can be used to build real-time Depression prediction systems. There are many ancient systems for recognizing emotions, so this proposed ResNet Algorithm promotes good results when comparing to other detection approaches of depression. However, all this work aims to establish a system based on the analysis of depression. The researchers can rely on this system to make a good model of depression analysis in future and can solves the problem in hand.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.