SVM-kNN- IPSO ensemble method for Diagnosis of Novel Coronavirus (COVID-19) with CT images
Main Article Content
Abstract
:New coronavirus epidemic- COVID- 19 is still growing. This epidemic disease not only includes high mortality due to viral infection but also caused the psychological disaster in all parts of the world. The paper provides the early Coronavirus stage detection COVID-19, with the methods of machine learning. Support vector machine (SVM) is a two-class classifier which in the recent years attracted a significant attention. The performance of this classifier depends on the amount of its parameters such as C (Penalty Factor) and the existing parameter in kernel. Also the selection of a suitable kernel function has a significant affect in its performance improvement. Besides the mentioned cases, performing the feature selection process not only causes to improve the mentioned performance improvement but also causes to reduce the computation complexity and training time. In this paper, we used the improved partial swarm optimization algorithm (IPSO) to optimize the SVM. Findings illustrated that proposed method could be utilized for diagnosing disease of COVID-19 as the assistant system. Promisingly, the proposed method can be regarded as a useful clinical decision tool for the physicians.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.