Genetic Algorithm Based Hybrid Model Of convolutional Neural Network And Random Forest Classifier For Sentiment Classification
Main Article Content
Abstract
Sentiment analysis is one of the active research areas in the field of datamining. Machine learning algorithms are capable to implement sentiment analysis. Due to the capacity of self-learning and massive data handling, most of the researchers are using deep learning neural networks for solving sentiment classification tasks. So, in this paper, a new model is designed under a hybrid framework of machine learning and deep learning which couples Convolutional Neural Network and Random Forest classifier for fine-grained sentiment analysis. The Continuous Bag-of-Word (CBOW) model is used to vectorize the text input. The most important features are extracted by the Convolutional Neural Network (CNN). The extracted features are used by the Random Forest(RF) classifier for sentiment classification. The performance of the proposed hybrid CNNRF model is comparedwith the base model such as Convolutional Neural Network (CNN) and Random Forest (RF) classifier. The experimental result shows that the proposed model far beat the existing base models in terms of classification accuracy and effectively integrated genetically-modified CNN with Random Forest classifier.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.