Morphological Transformation In Poor Lighting Images For Image Contrast Enhancement
Main Article Content
Abstract
The paper presents a novel algorithm for the computation of the image decomposition using a morphological filter with reconstruction. The target applications are image contrast enhancement especially those with high dynamic content. Both bright and dark regions contrast enhancement were considered. A new hardware efficient implementation of decomposition is presented. Following decomposition in 5 levels of detail a local contrast enhancement is performed. The new reconstruction algorithm and its hardware implementation as proposed is shown to be independent on structural element size and that it results in a predictable time frame operation. A mixed schematic and VHDL/Verilog description of the decomposition filters was synthesized and results show far higher speed performance compared with solutions found in recent literature.
Image organizing strategies are essentially required to the pictures captured by satellites. The grey levels in the image captured by satellites need to be normalized for improving picture contrast. The pictures captured by satellites are generally poor in quality and the contrast levels are also very less. In this manuscript a differentiation approach dependent on scientific morphology called rotational morphological transformations are proposed using Modified Opening by Reconstruction Method (MORM). This methodology upgrade pictures with poor contrast and unable to recognize the objects in the image. In the images with poor lightening, morphological operations are performed to improve its clarity and contrast. Picture enhancement has been done by applying morphological operations on the satellite images considered. The technique utilizes data from picture by squares, while the morphological methods change the strategy using the contrast enhancement activity, which is utilized to characterize the multi-foundation poor lightening pictures. The total picture handling procedure is implemented utilizing MATLAB reproduction model. The MORM method is compared with the traditional methods and the results show that the proposed method is better in improving the accuracy rate.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.