Spectrum Sensing Based On Deep Learning To Increase Spectrum Utilization
Main Article Content
Abstract
This paper proposes a new spectrum sensing technique for cognitive radio systems. To determine vacancy of the spectrum, the proposed method employs the recurrent neural network (RNN), one of the popular deep learning techniques. The proposed technique determines the spectrum occupancy of the primary user (PU) by observing the received signal’s energy and any information on the PU signal characteristic is not used. To this end, the received signal’s spectrum is obtained by fast Fourier transform (FFT). This process is performed on consecutive received signals and the resulting spectrums are stacked. Finally, a 2-dimensional spectrum (or spectrogram) is made. This 2-D spectrum is cut into sensing channel bandwidths and inputted to the deep learning model to decide the channel’s occupancy. While the recently published spectrum sensing technique based on convolutional neural network (CNN) relies on an empty channel, the proposed technique does not require any empty channel. Only the channel signal of interest to sense is needed. Since spectrum sensing results is two (busy or idle), binary classification deep learning model is developed. According to the computer simulation results, the proposed method has similar performance with the conventional CNN-based method while the spectral efficiency of the proposed method is much higher than that of the existing scheme. In addition, the overall learnable parameters of the proposed deep learning model is only 2/3 of the existing method
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.