CNN Intrusion Detection for Threat Analysis of a Network
Main Article Content
Abstract
The technological advancement realized in the discovery and embrace of both IoT and IIoT is totally indispensable. Many systems and subsystems both robust and miniaturized have made their existence into the technical arena due to IoT. It goes without saying that IoT has brought into light very diverse benefits that cut across universal applications.However, the pre-requisite of a network channel existence for an IoT operation to be successful is the only pitfall that this essentially unique system possesses. There is a significant amount of danger associated with transmission networks. They have very substantial susceptibility to both online and offline threats by malicious cyber intentions.This paper focuses on the analyses of the threats posed to these IoT networks through Artificial Neural Networks. Specifically, a model is trained through recurrent and convolutional neural network to do intensive analysis on the threat intensity, type and threat source for data logging purposes. The Intruder detection system (IDS) explored in this paper registers a success rate of 99% based on the empirical data posed to the model.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.