Cronobacter sakazakii: Emerging Public Health Threat for Infants
Main Article Content
Abstract
Cronobacter sakazakii is a new pathogenic bacteria that is the leading cause of severe diseases that affect public health, mainly infants and neonates and immunocompromised persons. This bacterium is an isolated cause of severe infections such as necrotizing enterocolitis, meningitis, and bacteremia, with case fatalities ranging from 40 to 80%. The following cases are most vulnerable: Children under 3 because their immune system is poorly developed. Despite the relatively low case rates globally of C. sakazakii infections, evidence suggests that foodborne transmission, specifically through infant formula consumption, is a significant route of infection. The bacterium likes to be in dry places, which is why it is seen increasing in infant formula and powdered foods. Thus, the risk of getting infected is very high among the young. It is only in the recent past that researchers have been able to propose probable virulence factors in C. sakazakii, including outer membrane proteins and enzymes. Among these modes are the facilities that allow the bacterium to penetrate the gastrointestinal tract and the blood-brain barrier, which qualify the bacterium as lethal to the infant populations. Reducing contamination risks requires committed control measures that include better ways of manufacturing, sterilizing equipment, and educating caregivers. Disease surveillance and laboratory reporting on C. sakazakii cases should be stepped up to detect cases and control the disease. In conclusion, the primary strategies for minimizing the effects of C. sakazakii can be achieved through concerted efforts by the government, health departments, and the food processing sector to defend vulnerable groups.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
References
Almajed, F. S., & Forsythe, S. J. (2016). Cronobacter sakazakii clinical isolates overcome host barriers andevade the immune response. Microbial Pathogenesis, 90, 55–63. doi:10.1016/j.micpath.2015.11.014.
Čapla, J., Zajác, P., Ševcová, K., Čurlej, J., & Fikselová, M. (2022). Milk and dairy products--summary of European legislation, hygiene manuals, ISO standards and Codex Alimentarius standards. Slovak Journal of Food Sciences, 16.
Cava Gümüş, P., Tekiner, İ. H., Çakmak, B., Tacer Caba, Z., & Özpınar, H. (2017). Investigation of extended spectrum Β-lactamases (ESBL)-producing Enterobacteriaceae and Cronobacter Spp in infant formulas and cereal-based foods for children. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 19-32.
Dakeishi, M., Murata, K., & Grandjean, P. (2006). Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environmental Health, 5, 1-7.
Demirci, U., Tekiner, İ. H., Çakmak, B., Özpınar H. (2018). Occurrence and molecular characterization of different virulence-associated genes of Cronobacter sakazakii isolates from some foods and dust samples. Cienc. Rural vol.48 no.8. doi: 10.1590/0103-8478cr20180127
Divergent Virulence Potential Among Cronobacter Spp. Plos One, 11(6), E0158428. Doi:10.1371/Journal.Pone.0158428.
Du, X., Han, R., Li, P., & Wang, S. (2015). Comparative proteomic analysis of Cronobacter sakazakii isolates with different virulences. Journal of Proteomics, 128, 344–351. doi:10.1016/j.jprot.2015.08.013.
El-Sharoud, W. M., O’Brien, S., Negredo, C., Iversen, C., Fanning, S., & Healy, B. (2009). Characterization of Cronobacter recovered from dried milk and related products. BMC Microbiology, 9(1), 24. doi:10.1186/1471-2180-9-24.
Erkekoglu, P., Sipahi, H., Şahin, G., & Baydar, T. A. (2009). Hidden danger in infant formulas and baby foods: Enterobacter sakazakii contamination. FABAD J Pharm Sci, 34, 153-65.
Eshwar, A. K., Tall, B. D., Gangiredla, J., Gopinath, G. R., Patel, I. R., Neuhauss, S. C. F., Lehner, A. (2016). Linking Genomo- and Pathotype: Exploiting The Zebrafish Embryo Model To Investigate The
FAO/WHO, “Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae”, Microbiological Risk Assessment Series No. 15. Rome. 90pp. Retrieved from (05/2019)
Fei, P., Man, C., Lou, B., Forsythe, S. J., Chai, Y., Li, R., Jiang, Y. (2015). Genotyping and Source Tracking of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula (PIF) and an Infant Formula Production Factory in China. Applied and Environmental Microbiology, 81(16), 5430–5439. doi:10.1128/aem.01390-15.
Forsythe, S. (2018). Microbial source tracking of Cronobacter spp. In Advances in Applied Microbiology (Vol. 103, pp. 49-101). Academic Press.
Gill, A. (2018). Developing A Real-Time Electronic Funds Transfer System for Credit Unions. International Journal of Advanced Research in Engineering and Technology (IJARET), 9(1), pp. 162-184. https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1
Heperkan, D., Dalkilic-Kaya, G., & Juneja, V. K. (2017). Cronobacter sakazakii in baby foods and baby food ingredients of dairy origin and microbiological profile of positive samples. LWT, 75, 402–407. doi:10.1016/j.lwt.2016.09.013.
Hunter, C. J., & Bean, J. F. (2013). Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. Journal of Perinatology, 33(8), 581–585. doi:10.1038/jp.2013.26.
Hyeon, J. Y., Seo, K. H., Chon, J. W., Bae, D., Jeong, D., & Song, K. Y. (2020). Accurate and Rapid Methods for Detecting Salmonella spp. Using Polymerase Chain Reaction and Aptamer Assay from Dairy Products: A Review. Journal of Dairy Science and Biotechnology, 38(4), 169-188.
Iversen, C., Lehner, A., Mullane, N., Bidlas, E., Cleenwerck, I., Marugg, J., ... & Joosten, H. (2007). The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC evolutionary biology, 7, 1-11.
Ivy, R. A., Farber, J. M., Pagotto, F., & Wiedmann, M. (2013). International Life Science Institute North America Cronobacter (Formerly Enterobacter sakazakii) Isolate Set. Journal of Food Protection, 76(1), 40–51. doi:10.4315/0362-028x.jfp-11-546.
Jang, H., Chase, H. R., Gangiredla, J., Grim, C. J., Patel, I. R., Kothary, M. H., ... & Pava-Ripoll, M. (2020). Analysis of the molecular diversity among Cronobacter species isolated from filth flies using targeted PCR, pan genomic DNA microarray, and whole genome sequencing analyses. Frontiers in microbiology, 11, 561204.
Jaradat, Z. W., Ababneh, Q. O., Saadoun, I. M., Samara, N. A., & Rashdan, A. M. (2009). Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing. BMC Microbiology, 9(1), 225. doi:10.1186/1471-2180-9-225.
Kim, K. P., Choi, J., Lim, J. A., Lee, J., Hwang, S., & Ryu, S. (2010). Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl. Environ. Microbiol., 76(15), 5188-5198.
Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and enhancing DevOps efficiency. International Journal of Computational Engineering and Management, 6(6), 118-142. Retrieved https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
Lehner, A., & Stephan, R. (2004). Microbiological, epidemiological, and food safety aspects of Enterobacter sakazakii. Journal of food protection, 67(12), 2850-2894.
Miranda, N., Banerjee, P., Simpson, S., Kerdahi, K., & Sulaiman, I. (2017). Molecular Surveillance of Cronobacter spp. Isolated from a Wide Variety of Foods from 44 Different Countries by Sequence Typing of 16S rRNA, rpoB and O-Antigen Genes. Foods, 6(5), 36. doi:10.3390/foods6050036.
Müller, A., Stephan, R., Fricker-Feer, C., & Lehner, A. (2013). Genetic Diversity of Cronobacter sakazakii Isolates Collected from a Swiss Infant Formula Production Facility. Journal of Food Protection, 76(5), 883–887. doi:10.4315/0362-028x.jfp-12-521.
Nyati, S. (2018). "Revolutionizing LTL Carrier Operations: A Comprehensive Analysis of an Algorithm-Driven Pickup and Delivery Dispatching Solution", International Journal of Science and Research (IJSR), Volume 7 Issue 2, pp. 1659-1666, https://www.ijsr.net/getabstract.php?paperid=SR24203183637
Nyati, S. (2018). "Transforming Telematics in Fleet Management: Innovations in Asset Tracking, Efficiency, and Communication", International Journal of Science and Research (IJSR), Volume 7 Issue 10, pp. 1804-1810, https://www.ijsr.net/getabstract.php?paperid=SR24203184230
Ogihara, H., Kiribe, N., Fukuda, N., Furukawa, S., Morinaga, Y., & Igimi, S. (2014). Cronobacter spp. in Commercially Available Dried Food in Japan. Biocontrol Science, 19(4), 209–213. doi:10.4265/bio.19.209.
Parra-Flores, J., Rodriguez, A., Riffo, F., Arvizu-Medrano, S. M., Arias-Rios, E. V., & Aguirre, J. (2015). Investigation on the Factors Affecting Cronobacter sakazakii Contamination Levels in Reconstituted Powdered Infant Formula. Frontiers in Pediatrics, 3. doi:10.3389/fped.2015.00072.
Shaker, R., Osaili, T., Al-Omary, W., Jaradat, Z., & Al-Zuby, M. (2007). Isolation of Enterobacter sakazakii and other Enterobacter sp. from food and food production environments. Food Control, 18(10), 1241–1245. doi:10.1016/j.foodcont.2006.07.020.
Ye, Y., Li, H., Ling, N., Han, Y., Wu, Q., Xu, X., Gao, J. (2016). Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. International Journal of Food Microbiology, 217, 182–188. doi:10.1016/j.ijfoodmicro.2015.08.025.
Zhang, L. & Lee, Y. H. (2022). “Bacteriophage-Based Biocontrol for Pathogens,” J. Food Prot., vol. 85, no. 3, pp. 456-467.
Zimmermann, J., Schmidt, H., Loessner, M. J., & Weiss, A. (2014). Development of a rapid detection system for opportunistic pathogenic Cronobacter spp. in powdered milk products. Food Microbiology, 42, 19–25. doi:10.1016/j.fm.2014.02.010.
Blaser, S., Jay, V., Becker, L. E., & Ford-Jones, E. L. (2002). Neonatal brain infection. MRI of the neonatal brain. London, UK.
Drudy, D., Mullane, N. R., Quinn, T., Wall, P. G., & Fanning, S. (2006). Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clinical Infectious Diseases, 42(7), 996-1002.
Elkhawaga, A. A., Hetta, H. F., Osman, N. S., Hosni, A., & El-Mokhtar, M. A. (2020). Emergence of Cronobacter sakazakii in cases of neonatal sepsis in upper Egypt: first report in North Africa. Frontiers in microbiology, 11, 215.