IMAGE-GUIDED SYNTHESIS REVEALS POTENT BLOOD-BRAIN BARRIER PERMEABLE HISTONE DEACETYLASE INHIBITORS
Main Article Content
Abstract
The blood-brain barrier (BBB) penetration of numerous histone deacetylase (HDAC) inhibitors, which are employed to investigate and treat brain illnesses, has been found to be low in recent research. The high doses required to achieve therapeutic efficacy may be explained by inadequate brain penetrance in addition to the observed low HDAC potency and selectivity. We present here the synthesis and assessment of a new class of highly potent, bloodbrain barrier permeable HDAC inhibitors for central nervous system (CNS) applications, based on an image-guided methodology that involves radiolabeling and parallel synthesis of several compounds based on the benzamide HDAC inhibitor MS-275 as a template. Rapid carbon-11 tagging and PET imaging in the baboon model were used to optimize BBB penetration. The imaging-derived data on BBB penetration from each chemical was then fed back into the design process. After analyzing 17 different compounds, it was discovered that some of them had high binding affinities and BBB permeabilities. A basic benzylic amine was a crucial component in this benzamide series that conferred BBB penetration. The compounds demonstrated an inhibitory effect of 1-100 nM on recombinant human HDAC1 and HDAC2. In the brain, three of the carbon-11 labeled aminomethyl benzamide derivatives demonstrated considerable regional binding heterogeneity (high in the thalamus and cerebellum) and high BBB penetration (∼0.015%ID/cc). When combined, these methods have produced a plan and a forecasting model for creating very strong and BBBpermeable HDAC inhibitors for use in the central nervous system as well as new candidate chemicals for small molecule probes and medications.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
References
(1) Bernal, A. J., and Jirtle, R. L. (2010) Epigenomic Disruption: The Effects of Early
Developmental Exposures. Birth Defects Res., Part A 88, 938−944.
(2) Bierne, H., Hamon, M., and Cossart, P. (2012) Epigenetics and Bacterial Infections. Cold
Spring Harbor Perspect. Med. 2,x DOI: 10.1101/cshperspect.a010272.
(3) Majumdar, G., Adris, P., Bhargava, N., Chen, H., and Raghow, R. (2012) Pan-Histone
Deacetylase Inhibitors Regulate Signaling Pathways Involved in Proliferative and ProInflammatory Mechanisms in H9c2 Cells. BMC Genomics 13, 709−728.
(4) Esteller, M. (2007) Cancer Epigenomics: DNA Methylomes and Histone-Modification
Maps. Nat. Rev. Genet. 8, 286−298.
(5) Tsankova, N., Renthal, W., Kumar, A., and Nestler, E. J. (2007) Epigenetic Regulation in
Psychiatric Disorders. Nat. Rev. Neurosci. 8, 355−367.
(6) Hyman, S. E. (2012) Target Practice: Hdac Inhibitors for Schizophrenia. Nat. Neurosci.
, 1180−1181.
(7) Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., and Pazdur, R. (2007) FDA
Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell
Lymphoma. Oncologist 12, 1247−1252.
(8) Ramaswamy, B., Fiskus, W., Cohen, B., Pellegrino, C., Hershman, D. L., Chuang, E.,
Luu, T., Somlo, G., Goetz, M., Swaby, R., Shapiro, C. L., Stearns, V., Christos, P., EspinozaDelgado, I., Bhalla, K., and Sparano, J. A. (2012) Phase I-II Study of Vorinostat Plus
Paclitaxel and Bevacizumab in Metastatic Breast Cancer: Evidence for VorinostatInduced
Tubulin Acetylation and Hsp90 Inhibition in Vivo. Breast Cancer Res. Treat. 132,
−1072.
(9) Lee, E. Q., Puduvalli, V. K., Reid, J. M., Kuhn, J. G., Lamborn, K. R., Cloughesy, T. F.,
Chang, S. M., Drappatz, J., Yung, W. K. A., Gilbert, M. R., Robins, H. I., Lieberman, F. S.,
Lassman, A. B., McGovern, R. M., Xu, J. H., Desideri, S., Ye, X. B., Ames, M. M., EspinozaDelgado, I., Prados, M. D., and Wen, P. Y. (2012) Phase I Study of Vorinostat in Combination
with Temozolomide in Patients with High-Grade Gliomas: North American Brain Tumor
Consortium Study 04−03. Clin. Cancer Res. 18, 6032−6039.
(10) Yardley, D. A., Ismail-Khan, R. R., Melichar, B., Lichinitser, M., Munster, P. N., Klein,
P. M., Cruickshank, S., Miller, K. D., Lee, M. J., and Trepel, J. B. (2013) Randomized Phase
II, Double-Blind, PlaceboControlled Study of Exemestane with or without Entinostat in
Postmenopausal Women with Locally Recurrent or Metastatic Estrogen Receptor-Positive
Breast Cancer Progressing on Treatment with a Nonsteroidal Aromatase Inhibitor. J. Clin.
Oncol. 31, 2128− 2135.
(11) Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D., and
Rumbaugh, G. (2010) Inhibitors of Class 1 Histone Deacetylases Reverse Contextual
Memory Deficits in a Mouse Model of Alzheimer’s Disease. Neuropsychopharmacol. 35,
−880.
(12) Golden, S. A., Christoffel, D. J., Heshmati, M., Hodes, G. E., Magida, J., Davis, K.,
Cahill, M. E., Dias, C., Ribeiro, E., Ables, J. L., Kennedy, P. J., Robison, A. J., GonzalezMaeso, J., Neve, R. L., Turecki, G., Ghose, S., Tamminga, C. A., and Russo, S. J. (2013)
Epigenetic Regulation of Rac1 Induces Synaptic Remodeling in Stress Disorders and
Depression. Nat. Med. 19, 337−344.
(13) Abe, T., and Zukin, R. S. (2008) Epigenetic Targets of Hdac Inhibition in
Neurodegenerative and Psychiatric Disorders. Curr. Opin. Pharmacol. 8, 57−64.
(14) Kazantsev, A. G., and Thompson, L. M. (2008) Therapeutic Application of Histone
Deacetylase Inhibitors for Central Nervous System Disorders. Nat. Rev. Drug Discovery 7,
−868.
(15) Price, S., and Dyke, H. J. (2007) Histone Deacetylase Inhibitors: An Analysis of Recent
Patenting Activity. Expert Opin. Ther. Pat. 17, 745−765.
(16) Kim, S. W., Hooker, J. M., Otto, N., Win, K., Muench, L., Shea, C., Carter, P., King, P.,
Reid, A. E., Volkow, N. D., and Fowler, J. S. (2013) Whole-Body Pharmacokinetics of Hdac
Inhibitor Drugs, Butyric Acid, Valproic Acid and 4-Phenylbutyric Acid Measured with
Carbon-11 Labeled Analogs by Pet. Nucl. Med. Biol. 40, 912−918.
(17) Hooker, J. M., Kim, S. W., Alexoff, D., Xu, Y. W., Shea, C., Reid, A., Volkow, N., and
Fowler, J. S. (2010) Histone Deacetylase Inhibitor MS-275 Exhibits Poor Brain Penetration:
Pharmacokinetic Studies of [ 11C]MS-275 Using Positron Emission Tomography. ACS
Chem. Neurosci. 1, 65−73.
(18) Hanson, J. E., La, H., Plise, E., Chen, Y. H., Ding, X., Hanania, T., Sabath, E. V.,
Alexandrov, V., Brunner, D., Leahy, E., Steiner, P., Liu, L., Scearce-Levie, K., and Zhou, Q.
(2013) SAHA Enhances Synaptic Function and Plasticity in Vitro but Has Limited Brain
Availability in Vivo and Does Not Impact Cognition. PLoS One 8, e69964.
(19) Schreiber, S. L. (2011) Organic Synthesis toward SmallMolecule Probes and Drugs.
Proc. Natl. Acad. Sci. U.S.A. 108, 6699− 6702.
(20) Kim, J. Y., Shen, S., Dietz, K., He, Y., Howell, O., Reynolds, R., and Casaccia, P. (2010)
HDAC1 Nuclear Export Induced by Pathological Conditions Is Essential for the Onset of
Axonal Damage. Nat. Neurosci. 13, 180−189.
(21) Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J.,
Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R., and Tsai, L. H. (2009) HDAC2 Negatively Regulates Memory Formation and Synaptic
Plasticity. Nature 459, 55−60.
(22) Graff, J., Rei, D., Guan, J. S., Wang, W. Y., Seo, J., Hennig, K. M., Nieland, T. J., Fass,
D. M., Kao, P. F., Kahn, M., Su, S. C., Samiei, A., Joseph, N., Haggarty, S. J., Delalle, I., and
Tsai, L. H. (2012) An Epigenetic Blockade of Cognitive Functions in the Neurodegenerating
Brain. Nature 483, 222−226. ACS Chemical Neuroscience Research Article 595
dx.doi.org/10.1021/cn500021p | ACS Chem. Neurosci. 2014, 5, 588−596
(23) Kortagere, S., Chekmarev, D., Welsh, W. J., and Ekins, S. (2008) New Predictive
Models for Blood-Brain Barrier Permeability of DrugLike Molecules. Pharm. Res. 25,
−1845. (24) Syvanen, S., Lindhe, O., Palner, M., Kornum, B. R., Rahman, O.,
Langstrom, B., Knudsen, G. M., and Hammarlund-Udenaes, M. (2009) Species Differences
in Blood-Brain Barrier Transport of Three Positron Emission Tomography Radioligands with
Emphasis on Pglycoprotein Transport. Drug Metab. Dispos. 37, 635−643.
(25) Fan, Y., Unwalla, R., Denny, R. A., Di, L., Kerns, E. H., Diller, D. J., and Humblet, C.
(2010) Insights for Predicting Blood-Brain Barrier Penetration of Cns Targeted Molecules
Using Qspr Approaches. J. Chem. Inf. Model. 50, 1123−1133.
(26) Kattar, S. D., Surdi, L. M., Zabierek, A., Methot, J. L., Middleton, R. E., Hughes, B.,
Szewczak, A. A., Dahlberg, W. K., Kral, A. M., Ozerova, N., Fleming, J. C., Wang, H.,
Secrist, P., Harsch, A., Hamill, J. E., Cruz, J. C., Kenific, C. M., Chenard, M., Miller, T. A.,
Berk, S. C., and Tempest, P. (2009) Parallel Medicinal Chemistry Approaches to Selective
HDAC1/HDAC2 Inhibitor (SHI-1:2) Optimization. Bioorg. Med. Chem. Lett. 19,
−1172. (27) Marazano, C., Maziere, M., Berger, G., and Comar, D. (1977) Synthesis of
Methyl Iodide-11C and Formaldehyde-11C. Int. J. Radiat. Appl. Instrum. A 28, 49−52.
(28) Link, J. M., Krohn, K. A., and Clark, J. C. (1997) Production of [ 11C]Ch3I by Single
Pass Reaction of [11C]Ch4 with I2. Nucl. Med. Biol. 24, 93−97.
(29) Larsen, P., Ulin, J., Dahlstrøm, K., and Jensen, M. (1997) Synthesis of
C]Iodomethane by Iodination of [11C]methane. Appl. Radiat. Isot. 48, 153−157.
(30) Jewett, D. M. (1992) A Simple Synthesis of [11C]Methyl Triflate. Int. J. Radiat. Appl.
Instrum. A 43, 1383−1385.
(31) Le Bars, D., Luthra, S. K., Pike, V. W., and Duc, C. L. (1987) The Preparation of a
Carbon-11 Labelled Neurohormone–[ 11C]- Melatonin. Int. J. Radiat. Appl. Instrum. A 38,
−1077. (32) Methot, J. L., Chakravarty, P. K., Chenard, M., Close, J., Cruz, J. C.,
Dahlberg, W. K., Fleming, J., Hamblett, C. L., Hamill, J. E., Harrington, P., Harsch, A.,
Heidebrecht, R., Hughes, B., Jung, J., Kenific, C. M., Kral, A. M., Meinke, P. T., Middleton,
R. E., Ozerova, N., Sloman, D. L., Stanton, M. G., Szewczak, A. A., Tyagarajan, S., Witter,
D. J., Secrist, J. P., and Miller, T. A. (2008) Exploration of the Internal Cavity of Histone
Deacetylase (HDAC) with Selective HDAC1/HDAC2 Inhibitors (SHI-1:2). Bioorg. Med.
Chem. Lett. 18, 973−978.
(33) el-Beltagi, H. M., Martens, A. C., Lelieveld, P., Haroun, E. A., and Hagenbeek, A. (1993)
Acetyldinaline: A New Oral Cytostatic Drug with Impressive Differential Activity against
Leukemic Cells and Normal Stem Cells–Preclinical Studies in a Relevant Rat Model for
Human Acute Myelocytic Leukemia. Cancer Res. 53, 3008−3014.
(34) Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A.,
Breslow, R., and Pavletich, N. P. (1999) Structures of a Histone Deacetylase Homologue
Bound to the Tsa and Saha Inhibitors. Nature 401, 188−193.
(35) Wang, D. F., Wiest, O., Helquist, P., Lan-Hargest, H. Y., and Wiech, N. L. (2004) On the
Function of the 14 a Long Internal Cavity of Histone Deacetylase-Like Protein: Implications
for the Design of Histone Deacetylase Inhibitors. J. Med. Chem. 47, 3409−3417.
(36) Hendricks, J. A., Keliher, E. J., Marinelli, B., Reiner, T., Weissleder, R., and Mazitschek,
R. (2011) In Vivo Pet Imaging of Histone Deacetylases by F-18-Suberoylanilide Hydroxamic
Acid (F18-Saha). J. Med. Chem. 54, 5576−5582.
(37) Zeglis, B. M., Pillarsetty, N., Divilov, V., Blasberg, R. A., and Lewis, J. S. (2011) The
Synthesis and Evaluation of N-1-(4-(2-[F-18]- Fluoroethyl)Phenyl)-N-8-
Hydroxyoctanediamide ([F-18]-Fesaha), a Pet Radiotracer Designed for the Delineation of
Histone Deacetylase Expression in Cancer. Nucl. Med. Biol. 38, 683−696.
(38) Seo, Y. J., Muench, L., Reid, A., Chen, J., Kang, Y., Hooker, J. M., Volkow, N. D.,
Fowler, J. S., and Kim, S. W. (2013) Radionuclide Labeling and Evaluation of Candidate
Radioligands for Pet Imaging of Histone Deacetylase in the Brain. Bioorg. Med. Chem. Lett.
, 6700− 6705. (39) Shuiyu, L., Zhang, Y., Kalin, J., Liow, J.-S., Gladding, R., L, Innis, R.
B., Koziokowski, A. P., and Pike, V. W. (2013) Synthesis and Evaluation of [Methyl -
c]Kb631 − a Candidate Radioligand for Histone Deacetylase Isozyme 6 (Hdac6). J.
Labelled Compd. Radiopharm. 56, S319.
(40) Hooker, J. M., Xu, Y., Schiffer, W., Shea, C., Carter, P., and Fowler, J. S. (2008)
Pharmacokinetics of the Potent Hallucinogen, Salvinorin a in Primates Parallels the Rapid
Onset and Short Duration of Effects in Humans. NeuroImage 41, 1044−1050.
(41) Riva, L., Blaney, S. M., Dauser, R., Nuchtern, J. G., Durfee, J., McGuffey, L., and Berg,
S. L. (2000) Pharmacokinetics and Cerebrospinal Fluid Penetration of CI-994 (nacetyldinaline) in the Nonhuman Primate. Clin. Cancer Res. 6 (3), 994−997.
(42) Ertl, P., Rohde, B., and Selzer, P. (2000) Fast Calculation of Molecular Polar Surface
Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug
Transport Properties. J. Med. Chem. 43, 3714−3717.
(43) Schroeder, A., Lewis, M. C., Fass, D. M., Wagner, F. F., Zhang, Y. L., Hennig, K. M.,
Gale, J., Zhao, W. N., Reis, S., Barker, D. D., Berry-Scott, E., Kim, S. W., Clore, E. L.,
Hooker, J. M., Holson, E. B., Haggarty, S. J., and Petryshen, T. L. (2013) A Selective Hdac
/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior
in Two Mood-Related Tests. PLoS One 8, e71323.
(44) Chou, C. J., Herman, D., and Gottesfeld, J. M. (2008) Pimelic Diphenylamide 106 Is a
Slow, Tight-Binding Inhibitor of Class I Histone Deacetylases. J. Biol. Chem. 283,
−35409.
(45) Lauffer, B. E., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, B.,
Ritscher, A., Fedorowicz, G., Vallero, R., Ortwine, D. F., Gunzner, J., Modrusan, Z.,
Neumann, L., Koth, C. M., Lupardus, P. J., Kaminker, J. S., Heise, C. E., and Steiner, P.
(2013) Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability. J. Biol. Chem. 288,
−26943.
(46) Bantscheff, M., Hopf, C., Savitski, M. M., Dittmann, A., Grandi, P., Michon, A. M.,
Schlegl, J., Abraham, Y., Becher, I., Bergamini, G., Boesche, M., Delling, M., Dumpelfeld,
B., Eberhard, D., Huthmacher, C., Mathieson, T., Poeckel, D., Reader, V., Strunk, K.,
Sweetman, G., Kruse, U., Neubauer, G., Ramsden, N. G., and Drewes, G. (2011)
Chemoproteomics Profiling of Hdac Inhibitors Reveals Selective Targeting of Hdac
Complexes. Nat. Biotechnol. 29, 255−265.
(47) Wang, Y., Zhang, Y.-L., Hennig, K., Gale, J. P., Hong, Y., Cha, A., Riley, M., Wagner, F.,
Haggarty, S. J., Holson, E., and Hooker, J. (2013) Class I HDAC Imaging Using [3 H]CI-994
Autoradiography. Epigenetics 8, 756−764.
(48) Di, L., Rong, H. J., and Feng, B. (2013) Demystifying Brain Penetration in Central
Nervous System Drug Discovery. J. Med. Chem. 56, 2−12.
(49) Katragadda, M., Magotti, P., Sfyroera, G., and Lambris, J. D. (2006) Hydrophobic Effect
and Hydrogen Bonds Account for the Improved Activity of a Complement Inhibitor,
Compstatin. J. Med. Chem. 49, 4616−4622.