Autonomous Road Damage Detection using Unmanned Aerial Vehicle Images and YOLO V8 Methods

Main Article Content

Dr. Y Srinivas
Veera Kanaka Lakshmi A
Navya R.
Vaishnavi S.
Siri Santoshi G.

Abstract

Using photos from Unmanned Aerial Vehicles (UAVs) and deep learning algorithms, this research provides a revolutionary automated road damage identification method. In order to provide a secure and long-lasting transportation system, road infrastructure maintenance is essential. On the other hand, gathering road damage data by hand may be dangerous and labor-intensive. Therefore, we suggest using artificial intelligence (AI) and unmanned aerial vehicles (UAVs) to greatly increase the effectiveness and precision of road damage identification. For object recognition and localisation in UAV photos, our suggested method makes use of three algorithms: YOLOv4, YOLOv5, and YOLOv7. We used a mix of a Spanish roadway dataset and the Chinese RDD2022 dataset for training and testing these methods. Our method obtains 59.9% average precision (mAP@.5) for the YOLOv5 versions, 65.70% mAP@.5 when using the YOLOv5 version using the Transformers Prediction the Head, or 73.20% mAP@.5 for that YOLOv7 version, testing results show the effectiveness of our methodology. These findings open the door for further study in this area and show the possibilities of employing deep learning and UAVs for automatic road damage identification.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Y , S. ., A, . V. K. L. ., R., N., S., V. ., & G., S. S. (2024). Autonomous Road Damage Detection using Unmanned Aerial Vehicle Images and YOLO V8 Methods. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 15(3), 106–116. https://doi.org/10.61841/turcomat.v15i3.14782
Section
Articles

References

H. S. S. Blas, A. C. Balea, A. S. Mendes, L. A. Silva, and G. V. González, ‘‘A platform for swimming pool detection and legal verification using a multi-agent system and remote image sensing,’’ Int. J. Interact. Multimedia Artif. Intell., vol. 2023, pp. 1–13, Jan. 2023.

V. J. Hodge, R. Hawkins, and R. Alexander, ‘‘Deep reinforcement learning for drone navigation using sensor data,’’ Neural Comput. Appl., vol. 33, no. 6, pp. 2015–2033, Jun. 2020, doi: 10.1007/s00521-020-05097-x.

A. Safonova, Y. Hamad, A. Alekhina, and D. Kaplun, ‘‘Detection of Norway spruce trees (Picea abies) infested by bark beetle in UAV images using YOLOs architectures,’’ IEEE Access, vol. 10, pp. 10384–10392, 2022.

D. Gallacher, ‘‘Drones to manage the urban environment: Risks, rewards, alternatives,’’ J. Unmanned Vehicle Syst., vol. 4, no. 2, pp. 115–124, Jun. 2016.

L. A. Silva, A. S. Mendes, H. S. S. Blas, L. C. Bastos, A. L. Gonçalves, and A. F. de Moraes, ‘‘Active actions in the extraction of urban objects for information quality and knowledge recommendation with machine learning,’’ Sensors, vol. 23, no. 1, p. 138, Dec. 2022, doi: 10.3390/ s23010138.

L. Melendy, S. C. Hagen, F. B. Sullivan, T. R. H. Pearson, S. M. Walker, P. Ellis, A. K. Sambodo, O. Roswintiarti, M. A. Hanson, A. W. Klassen, M. W. Palace, B. H. Braswell, and G. M. Delgado, ‘‘Automated method for measuring the extent of selective logging damage with airborne LiDAR data,’’ ISPRS J. Photogramm. Remote Sens., vol. 139, pp. 228–240, May 2018, doi: 10.1016/j.isprsjprs.2018.02.022.

L. A. Silva, H. S. S. Blas, D. P. García, A. S. Mendes, and G. V. González, ‘‘An architectural multi-agent system for a pavement monitoring system with pothole recognition in UAV images,’’ Sensors, vol. 20, no. 21, p. 6205, Oct. 2020, doi: 10.3390/s20216205.

M. Guerrieri and G. Parla, ‘‘Flexible and stone pavements distress detection and measurement by deep learning and low-cost detection devices,’’ Eng. Failure Anal., vol. 141, Nov. 2022, Art. no. 106714, doi: 10.1016/j.engfailanal.2022.106714.

D. Jeong, ‘‘Road damage detection using YOLO with smartphone images,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2020, pp. 5559–5562, doi: 10.1109/BIGDATA50022.2020.9377847.

M. Izadi, A. Mohammadzadeh, and A. Haghighattalab, ‘‘A new neuro-fuzzy approach for post-earthquake road damage assessment using GA and SVM classification from QuickBird satellite images,’’ J. Indian Soc. Remote Sens., vol. 45, no. 6, pp. 965–977, Mar. 2017.

Y. Bhatia, R. Rai, V. Gupta, N. Aggarwal, and A. Akula, ‘‘Convolutional neural networks based potholes detection using thermal imaging,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 3, pp. 578–588, Mar. 2022, doi: 10.1016/j.jksuci.2019.02.004.

J. Guan, X. Yang, L. Ding, X. Cheng, V. C. Lee, and C. Jin, ‘‘Automated pixel-level pavement distress detection based on stereo vision and deep learning,’’ Automat. Constr., vol. 129, p. 103788, Sep. 2021, doi: 10.1016/j.autcon.2021.103788.

D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, and Y. Sekimoto, ‘‘RDD2022: A multi-national image dataset for automatic road damage detection,’’ 2022, arXiv:2209.08538.

J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, 2017, pp. 6517–6525, doi: 10.1109/CVPR.2017.690.

J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. [Online]. Available: https://pjreddie.com/yolo/