Fuzzy Mean e-Open and e-Closed Sets

Main Article Content

Dr. M. Sankari


The notions of fuzzy mean e -open and e -closed sets is established. Moreover, some comparative study of these with other fuzzy mappings are investigated. Finally, we extend fuzzy mean e -open to fuzzy para e -open sets in fuzzy topology.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
Sankari, D. M. (2020). Fuzzy Mean e-Open and e-Closed Sets. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2921–2925. https://doi.org/10.61841/turcomat.v11i3.14664
Research Articles


. K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal.

Appl., 82(1981), 14-32.

C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190. [3] B. M. Ittanagi and R.

S. Wali, On fuzzy minimal open and fuzzy maximal open sets in FTSs, International J. of Mathematical

Sciences and Applications,1(2),2011.

S. Joseph, R. Balakumar and A. Swaminathan, On Fuzzy Paraopen Sets and Maps in Fuzzy Topological

Spaces (submitted).

M. Sankari and C. Murugesan, Fuzzy minimal e -open and maximal e -open sets in fuzzy topological

space (Submitted).

M. Sankari and C. Murugesan, Fuzzy e -paraopen sets and maps in fuzzy topological space(submitted).

V. Seenivasan and K. Kamala, Fuzzy e -continuity and F e –O sets. Annals of Fuzzy Mathematics and

Informatics, 8(1)(2014),141- 148.

Supriti Saha, Fuzzy δ -continuous mappings, J. Math. Anal. Appl. 126 (1987) 130-142.

A. Swaminathan, Fuzzy mean open and mean closed sets,J. Appl. Math. and Inform. Vol. 38(2020), No.5-

, 463-468, 2020.

L. A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353