Optimized Counter Design for Accelerated Summation in Digital Signal Processing Systems

Main Article Content

G. Vishwanath

Abstract

Efficient summation of multiple operands in parallel is crucial in various digital signal processing units. Accelerating this summation process requires high compression ratio counters and compressors. This study introduces a novel approach to fast saturated binary counters and exact/approximate (4:2) compressors utilizing sorting networks. The counter's inputs are asymmetrically divided into two groups and processed through sorting networks to produce reordered sequences, efficiently represented by one-hot code sequences. By establishing three special Boolean equations between the reordered sequence and the one-hot code sequence, the output boolean expressions of the counter are significantly simplified. Simulation results demonstrate the superiority of the proposed method over conventional approaches in terms of performance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Vishwanath, G. . (2020). Optimized Counter Design for Accelerated Summation in Digital Signal Processing Systems. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2620–2632. https://doi.org/10.61841/turcomat.v11i3.14427
Section
Research Articles

References

. C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron. Comput., vol. EC-13, no. 1, pp. 14–

, Feb. 1964, doi:10.1109/PGEC.1964.263830.

. R. S. Waters and E. E. Swartzlander, “A reduced complexity Wallace multiplier reduction,” IEEE Trans.

Comput., vol. 59, no. 8, pp. 1134–1137, Aug. 2010, doi: 10.1109/TC.2010.103.

. P. L. Montgomery, “Five, six, and seven-term karatsuba-like formulae,”IEEE Trans. Comput., vol. 54, no. 3,

pp. 362–369, Mar. 2005, doi:10.1109/TC.2005.49.

. J. Ding, S. Li, and Z. Gu, “High-speed ECC processor over NIST prime fields applied with Toom–Cook

multiplication,” in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 3, pp. 1003–1016, Mar. 2019,

doi:10.1109/TCSI.2018.2878598.

. R. Liu and S. Li, “A design and implementation of montgomery modular multiplier,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), Sapporo,Japan, May 2019, pp. 1–4, doi: 10.1109/ISCAS.2019.8702684.

. W. Wang, X. Huang, N. Emmart, and C. Weems, “VLSI design of a large-number multiplier for fully

homomorphic encryption,” in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 9, pp. 1879–

, Sep. 2014, doi: 10.1109/TVLSI.2013.2281786.

. S. Asif and Y. Kong, “Analysis of different architectures of counter based wallace multipliers,” in Proc. 10th

Int. Conf. Comput.Eng. Syst. (ICCES), Cairo, Egypt, Dec. 2015, pp. 139–144,

doi:10.1109/ICCES.2015.7393034.

. A. Najafi, B. Mazloom-nezhad, and A. Najafi, “Low-power and highspeed 4-2 compressor,” in Proc. 36th Int.

Conv. Inf. Commun. Technol.,Electron. Microelectron. (MIPRO), Opatija, Croatia, May 2013,pp. 66–69.

. A. Najafi, S. Timarchi, and A. Najafi, “High-speed energy-efficient 5:2 compressor,” in Proc. 37th Int. Conv.

Inf. Commun. Technol., Electron.Microelectron. (MIPRO), Opatija, Croatia, May 2014, pp. 80–84,

doi:10.1109/MIPRO.2014.6859537.

. S. Asif and Y. Kong, “Design of an algorithmic wallace multiplier using high speed counters,” in Proc. 10th

Int. Conf. Comput.Eng. Syst. (ICCES), Cairo, Egypt, Dec. 2015, pp. 133–138, doi:

1109/ICCES.2015.7393033.

. C. Fritz and A. T. Fam, “Fast binary counters based on symmetric stacking,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 25,no. 10, pp. 2971–2975, Oct. 2017, doi:10.1109/TVLSI.2017.2723475.

. Q. Jiang and S. Li, “A design of manually optimized (15,4) parallel counter,” in Proc. Int. Conf. Electron

Devices Solid-State Circuits (EDSSC), Hsinchu, Taiwan, Oct. 2017, pp. 1–2,

doi:10.1109/EDSSC.2017.8126527.

. M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost sorting network circuits using unary

processing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 8, pp. 1471–1480, Aug. 2018,

doi:10.1109/TVLSI.2018.2822300.

. D. E. Knuth, The Art of Computer Programming: Sorting and Searching,vol. 3. Reading, MA, USA: AddisonWesley, 1973

. M. Mehta, V. Parmar, and E. Swartzlander, “High-speed multiplier design using multi-input counter and

compressor circuits,” in Proc.10th IEEE Symp. Comput. Arithmetic, Grenoble, France, Jun. 1991, pp. 43–50,

doi: 10.1109/ARITH.1991.145532.

. A. Fathi, B. Mashoufi, and S. Azizian, “Very fast, high-performance 5-2 and 7-2 compressors in CMOS

process for rapid parallel accumulations,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6,

pp. 1403–1412, Jun. 2020, doi: 10.1109/TVLSI.2020. 2983458.

. T. Satish and K. S. Pande, “Multiplier using NAND based compressors,”in Proc. 3rd Int. Conf. Electron.,

Mater. Eng. Nano-Technol. (IEMENTech), Kolkata, India, Aug. 2019, pp. 1–6,

doi:10.1109/IEMENTech48150.2019.8981067.

. A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, and G. D. Meo, “Comparison and extension of approximate

-2 compressors for low-power approximate multipliers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,

no. 9, pp. 3021–3034, Sep. 2020, doi:10.1109/TCSI.2020.2988353.

. Z. Yang, J. Han, and F. Lombardi, “Approximate compressors for error resilient multiplier design,” in Proc.

IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFTS), Amherst, MA, USA, Oct. 2015, pp.

–186, doi: 10.1109/DFT.2015.7315159.

. O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Dual-quality 4:2 compressors for utilizing in

dynamic accuracy configurable multipliers,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no.

,pp. 1352–1361, Apr. 2017, doi: 10.1109/TVLSI.2016.2643003.

. K. Manikantta Reddy, M. H. Vasantha, Y. B. Nithin Kumar, and D. Dwivedi, “Design of approximate booth

squarer for error-tolerant computing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 5, pp.

–1241, May 2020, doi: 10.1109/TVLSI.2020.2976131.

. S. Venkatachalam and S.-B. Ko, “Design of power and area efficient approximate multipliers,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 5, pp. 1782–1786, May

,doi:10.1109/TVLSI.2016.2643639.

. G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,“Design-efficient approximate

multiplication circuits through partial product perforation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 24, no. 10, pp. 3105–3117, Oct. 2016, doi:10.1109/TVLSI.2016.2535398.

. W. Liu et al., “Design and analysis of approximate redundant binary multipliers,” IEEE Trans. Comput., vol.

, no. 6, pp. 804–819, Jun. 2019, doi: 10.1109/TC.2018.2890222.