Enhancing DDoS Attack Detection Using Machine Learning: A Framework with Feature Selection and Comparative Analysis of Algorithms
Main Article Content
Abstract
Distributed Denial of Service (DDoS) attacks are an ever-present threat to network security and can make online services hard for users to access. Conventional detection methods often struggle to effectively counter new and sophisticated DDoS attacks. This research article aims to assess the effectiveness of several machine learning methods in detecting distributed denial-of-service (DDoS) attacks. The evaluation is conducted using the DDOS attack SDN dataset, which is sourced from Google's research dataset. Various algorithms, including Random Forest, Decision Tree, Naive Bayes, and Support Vector Machine (SVM), are used for the purpose of analyzing network traffic data and detecting abnormal patterns that may indicate DDoS attacks. Results indicate that the Random Forest algorithm achieves the highest accuracy rate of 99.4% in detecting DDoS attacks. Additionally, the Decision Tree and SVM algorithms perform admirably, achieving accuracy rates of 98.8% and 98.4%, respectively. This research underscores the potential of machine learning algorithms in detecting and mitigating DDoS attacks. It emphasizes the necessity of employing advanced techniques for robust cyber threat defense and offers valuable insights into the performance of different machine learning algorithms in the context of DDoS attack detection.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.