SENTIMENT ANALYSIS OF CUSTOMER PRODUCT REVIEWS USING MACHINE LEARNING
Main Article Content
Abstract
Today, digital reviews play a pivotal role in enhancing global communications among consumers and influencing consumer buying patterns.
- commerce giants like Amazon, Flipkart, etc. provide a platform to consumers to share their experience and provide real insights about the performance of the product to future buyers. In order to extract valuable insights from a large set of reviews, classification of reviews into positive and negative sentiment is required. Sentiment Analysis is a computational study to extract subjective information from the text.
In the proposed work, over 4,000,00 reviews have been classified into positive and negative sentiments using Sentiment Analysis. Out of the various classification models, Naïve Bayes, Support Vector Machine (SVM) and Decision Tree have been employed for classification of reviews. The evaluation of models is done using 10-Fold Cross Validation.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.