Deep Learning Approach for Intelligent Intrusion Detection System
Main Article Content
Abstract
The Industrial Internet of Things has grown significantly in recent years. While implementing industrial digitalization, automation, and intelligence introduced a slew of cyber risks, the complex and varied industrial Internet of Things environment provided a new attack surface for network attackers. As a result, conventional intrusion detection technology cannot satisfy the network threat discovery requirements in today’s Industrial Internet of Things environment.
An intrusion detection system (IDS) is a critical component of network security protection because it enables the system to detect network intrusions efficiently. However, in recent years, as the operating environment and structure of the Industrial Internet of Things have changed, traditional intrusion detection models (such as intrusion detection models based on simple machine learning) have been unable to provide adaptive detection, response, and defence against complex network attacks.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.