AN INNOVATIVE STUDY ON SUM OF POWERS OF INTEGERS
Main Article Content
Abstract
The generalization of sum of integral powers of first n-natural numbers has been an interesting problem among the researchers in Analytical Number Theory for decades. This research article mainly focuses on the derivation of generalized result of this sum. More explicit formula has been derived in order to get the sum of any arbitrary integral powers of first n-natural numbers. Furthermore by using the fundamental principles of Combinatorics and Linear Algebra an attempt has been made to answer an interesting question namely: Is the sum of integral powers of natural numbers a unique polynomial? As a result it is depicted that this sum always equals a unique polynomial over natural numbers. Moreover some properties of the coefficients of this polynomial are derived.More importantly a recurrence relation which can give the formulas for sum of any positive integral powers of first n-natural numbers has been proposed and it is strongly believed that this recurrence relation is the most significant thing in this entire discussion
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.