Quality-of-Service Performance Comparison: Machine Learning Regression and Classification-Based Predictive Routing Algorithm
Main Article Content
Abstract
The Internet network has evolved rapidly and by no means of slowing down. The complexity of the network is
expected to grow exponentially, and with the high dependencies on Internet applications, there is a need to upgrade the current
routing mechanism in the network. The conventional routing protocol that is based on the shortest path is no longer relevant.
Recently, Machine Learning (ML) algorithms have become more prevalent in networking due to their ability to solve complex
problems intelligently. This work proposes two ML predictive routing algorithms using regression and classification
approaches to improve the Quality of Service in the network. Our simulation results show that the proposed regression-based
routing improves the delay by up to 52% compared to the classification-based algorithm. Although the regression-based
routing achieved better performance compared to the classification approach, it requires more input features to be trained. This
work also discusses the pros and cons of both approaches.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.