Feature extraction and genre-classification using customized kernel for Music information retrieval
Main Article Content
Abstract
Music feature extraction and genres form a natural way to consolidate audio and they share related rhythm and
texture. We will be building a customizedfeature extraction genre classification model using customized kernel in support
vector machine that will use features representing timbre, rhythmic and pitch analysis of the audio. We train various
classifiers like k-Nearest neighbor, Support vector machine, Logistic Regression, Neural Network on the GTZAN dataset
provided by MARYSAS. We are able to get good accuracy using Customized kernel and ensemble voting classifier and
support vector machine on both 10-genre and 4-genre classification.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.