Optimizing Text Categorization for Indonesian Text Using Clustering Label Technique
Main Article Content
Abstract
Text Categorization plays an important role for clustering the rapidly growing, yet unstructured, Indonesian text in digital format. Furthermore, it is deemed even more important since access to digital format text has become more necessary and widespread. There are many clustering algorithms used for text categorization. Unfortunately, clustering algorithms for text categorization cannot easily cluster the texts due to imperfect process of stemming and stopword of Indonesian language. This paper presents an intelligent system that categorizes Indonesian text documents into meaningful cluster labels. Label Induction Grouping Algorithm (LINGO) and Bisecting K- means are applied to process it through five phases, namely the pre-processing, frequent phrase extraction, cluster label induction, content discovery and final cluster formation. The experimental result showed that the system could categorize Indonesian text and reach to 93%. Furthermore, clustering quality evaluation indicates that text categorization using LINGO has high Precision and Recall with a value of 0.85 and 1, respectively, compare to Bisecting K-means which has a value of 0.78 and 0.99. Therefore, the result shows that LINGO is suitable for categorizing Indonesian text. The main contribution of this study is to optimize the clustering results by applying and maximizing text processing using Indonesian stemmer and stopword.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.