Ensemble Based Hybrid Variable Selection Method for Heart Disease Classification
Main Article Content
Abstract
In this paper, we proposed an ensemble-based hybrid variable selection model that aggregates various variable selection methods results based on majority voting approach to select a risk features subset in the heart disease datasets. The performance of the devised framework is evaluated using Z-Alizadeh Sani heart disease dataset from the UCI repository. Besides, we also compare this devised method with three non-ensemble variable selection methods namely the Chi-square test, Recursive Feature Elimination, and L1-Regularization. The selection process of the devised method is validated through a random forest classifier, it performs better in terms of specificity, sensitivity, accuracy, precision, and f1-score. The proposed method significantly enhances the accuracy of the heart disease classification model.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.